当前位置: X-MOL 学术Proc. Inst. Mech. Eng. C J. Mec. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimization of the centrifugal slurry pump through the splitter blades position
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ( IF 1.8 ) Pub Date : 2021-10-01 , DOI: 10.1177/09544062211027608
Ehsan Abdolahnejad 1 , Mahdi Moghimi 1 , Shahram Derakhshan 1
Affiliation  

Optimal transfer of two-phase solid-liquid flow (slurry flow) has long been a major industrial challenge. Slurry pumps are among the most common types of centrifugal pumps used to deal with this transfer issue. The approach of improving slurry pumps and consequently increasing the efficiency of a flow transmission system requires overcoming the effects of slurry flow such as the reduction in head, efficiency, and wear. This study attempts to investigate the changes in the pump head by modifying the slip factor distribution in the impeller channel. For this purpose, the effect of splitter blades on slip factor distribution to improve the pump head was investigated using numerical simulation tools and validated based on experimental test data. Next, an optimization process was used to determine the characteristics of the splitter (i.e., length, number, and environmental position of the splitter) based on a combination of experimental design methods, surface response, and genetic algorithm. The optimization results indicate that the splitters were in a relative circumferential position of 67.2% to the suction surface of the main blade. Also, the optimal number and length of splitter blades were 6 and 62.8% of the length of the main blades, respectively. Because of adding splitter blades and the reduction in the flow passage, the best efficiency point (BEP) of the slurry pump moved toward lower flow rates. The result of splitter optimization was the increase in pump head from 29.7 m to 31.7 m and the upkeep of efficiency in the initial values.



中文翻译:

通过分流叶片位置优化离心渣浆泵

两相固液流(浆液流)的最佳转移长期以来一直是一个主要的工业挑战。泥浆泵是用于处理这种输送问题的最常见的离心泵类型之一。改进泥浆泵并因此提高流体传输系统效率的方法需要克服泥浆流的影响,例如压头、效率和磨损的降低。本研究试图通过修改叶轮通道中的滑移系数分布来研究泵头的变化。为此,使用数值模拟工具研究了分流叶片对滑移因子分布的影响,以提高泵扬程,并基于实验测试数据进行验证。接下来,使用优化过程来确定分路器的特性(即长度、分流器的数量和环境位置)基于实验设计方法、表面响应和遗传算法的组合。优化结果表明,分流器与主叶片吸力面的相对圆周位置为67.2%。此外,分流叶片的最佳数量和长度分别为主叶片长度的 6% 和 62.8%。由于增加了分流叶片和流道的减少,渣浆泵的最佳效率点(BEP)向低流速移动。分流器优化的结果是泵扬程从 29.7 m 增加到 31.7 m,并保持了初始值的效率。优化结果表明,分流器与主叶片吸力面的相对圆周位置为67.2%。此外,分流叶片的最佳数量和长度分别为主叶片长度的 6% 和 62.8%。由于增加了分流叶片和流道的减少,渣浆泵的最佳效率点(BEP)向低流速移动。分流器优化的结果是泵扬程从 29.7 m 增加到 31.7 m,并保持了初始值的效率。优化结果表明,分流器与主叶片吸力面的相对圆周位置为67.2%。此外,分流叶片的最佳数量和长度分别为主叶片长度的 6% 和 62.8%。由于增加了分流叶片和流道的减少,渣浆泵的最佳效率点(BEP)向低流速移动。分流器优化的结果是泵扬程从 29.7 m 增加到 31.7 m,并保持了初始值的效率。由于增加了分流叶片和流道的减少,渣浆泵的最佳效率点(BEP)向低流速移动。分流器优化的结果是泵扬程从 29.7 m 增加到 31.7 m,并保持了初始值的效率。由于增加了分流叶片和流道的减少,渣浆泵的最佳效率点(BEP)向低流速移动。分流器优化的结果是泵扬程从 29.7 m 增加到 31.7 m,并保持了初始值的效率。

更新日期:2021-10-01
down
wechat
bug