当前位置: X-MOL 学术Appl. Phys. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controlled oxidation and surface modification increase heating capacity of magnetic iron oxide nanoparticles
Applied Physics Reviews ( IF 11.9 ) Pub Date : 2021-07-21 , DOI: 10.1063/5.0042478
Kaiyi Jiang 1 , Qingbo Zhang 1 , Daniel Torres Hinojosa 1 , Linlin Zhang 1 , Zhen Xiao 2 , Yu Yin 1 , Sheng Tong 1 , Vicki L. Colvin 2 , Gang Bao 1
Affiliation  

Magnetic iron oxide nanoparticles (MIONs) can generate heat under an alternating magnetic field, enabling a wide range of applications from water treatment to cancer hyperthermia therapy. For most magnetic heating applications, it is crucial to generate a high level of heat with a low dose of MIONs. Current methods to increase the specific absorption rate (SAR) of MIONs include increasing their size and doping iron oxide nanocrystals with other metal elements. Here, we demonstrate that controlled oxidation and surface modification can significantly increase SAR of MIONs. We synthesized MIONs of different core sizes and with different coatings, including phospholipid-PEG and triethylenetetramine (TETA). We oxidized PEG-coated MIONs in a controlled fashion and measured the SAR values of the MIONs under different oxidation states. We found that, with controlled oxidation, the SAR values of 15-nm and 18-nm MIONs increased by ∼1.87 fold after two weeks of oxidation. A similar fold-increase in SAR was achieved for 15-nm MIONs with TETA coating compared with PEG coating. We systematically characterized the physical properties of MIONs and showed that oxidation caused MIONs to transition from magnetite to maghemite, resulting in increased anisotropy constant and SAR values. Our results demonstrate new approaches to significantly increase the heating capacity of MIONs by controlled nanocrystal oxidation and surface modification.

中文翻译:

受控氧化和表面改性提高磁性氧化铁纳米粒子的加热能力

磁性氧化铁纳米粒子 (MION) 可以在交变磁场下产生热量,从而实现从水处理到癌症热疗的广泛应用。对于大多数磁加热应用,以低剂量的 MION 产生高水平的热量至关重要。目前提高 MION 比吸收率 (SAR) 的方法包括增加它们的尺寸和用其他金属元素掺杂氧化铁纳米晶体。在这里,我们证明受控氧化和表面改性可以显着增加 MION 的 SAR。我们合成了不同核心尺寸和不同涂层的 MION,包括磷脂-PEG 和三亚乙基四胺 (TETA)。我们以受控方式氧化了 PEG 包覆的 MION,并测量了不同氧化态下 MION 的 SAR 值。我们发现,通过受控氧化,氧化两周后,15-nm 和 18-nm MION 的 SAR 值增加了约 1.87 倍。与 PEG 涂层相比,具有 TETA 涂层的 15 nm MION 实现了类似的 SAR 倍数增加。我们系统地表征了 MION 的物理特性,并表明氧化导致 MION 从磁铁矿转变为磁赤铁矿,导致各向异性常数和 SAR 值增加。我们的结果证明了通过受控纳米晶体氧化和表面改性显着提高 MION 加热能力的新方法。我们系统地表征了 MION 的物理特性,并表明氧化导致 MION 从磁铁矿转变为磁赤铁矿,导致各向异性常数和 SAR 值增加。我们的结果证明了通过受控纳米晶体氧化和表面改性显着提高 MION 加热能力的新方法。我们系统地表征了 MION 的物理特性,并表明氧化导致 MION 从磁铁矿转变为磁赤铁矿,导致各向异性常数和 SAR 值增加。我们的结果证明了通过受控纳米晶体氧化和表面改性显着提高 MION 加热能力的新方法。
更新日期:2021-07-21
down
wechat
bug