当前位置: X-MOL 学术J. Comput. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosting the conformational sampling by combining replica exchange with solute tempering and well-sliced metadynamics
Journal of Computational Chemistry ( IF 3 ) Pub Date : 2021-09-29 , DOI: 10.1002/jcc.26752
Anji Babu Kapakayala 1, 2 , Nisanth N Nair 1
Affiliation  

Methods that combine collective variable (CV) based enhanced sampling and global tempering approaches are used in speeding-up the conformational sampling and free energy calculation of large and soft systems with a plethora of energy minima. In this paper, a new method of this kind is proposed in which the well-sliced metadynamics approach (WSMTD) is united with replica exchange with solute tempering (REST2) method. WSMTD employs a divide-and-conquer strategy wherein high-dimensional slices of a free energy surface are independently sampled and combined. The method enables one to accomplish a controlled exploration of the CV-space with a restraining bias as in umbrella sampling, and enhance-sampling of one or more orthogonal CVs using a metadynamics like bias. The new hybrid method proposed here enables boosting the sampling of more slow degrees of freedom in WSMTD simulations, without the need to specify associated CVs, through a replica exchange scheme within the framework of REST2. The high-dimensional slices of the probability distributions of CVs computed from the united WSMTD and REST2 simulations are subsequently combined using the weighted histogram analysis method to obtain the free energy surface. We show that the new method proposed here is accurate, improves the conformational sampling, and achieves quick convergence in free energy estimates. We demonstrate this by computing the conformational free energy landscapes of solvated alanine tripeptide and Trp-cage mini protein in explicit water.

中文翻译:

通过将复制品交换与溶质回火和精心切片的元动力学相结合来提高构象采样

结合基于集体变量 (CV) 的增强采样和全局回火方法的方法用于加速具有过多能量最小值的大型和软系统的构象采样和自由能计算。在本文中,提出了一种新的方法,其中将精细切片元动力学方法(WSMTD)与具有溶质回火的副本交换(REST2)方法相结合。WSMTD 采用分而治之的策略,其中自由能表面的高维切片被独立采样和组合。该方法使人们能够完成对 CV 空间的受控探索,如伞形采样中的限制偏差,并使用类似偏差的元动力学对一个或多个正交 CV 进行增强采样。此处提出的新混合方法能够通过 REST2 框架内的副本交换方案来提高 WSMTD 模拟中更慢自由度的采样,而无需指定相关的 CV。从联合 WSMTD 和 REST2 模拟计算的 CV 概率分布的高维切片随后使用加权直方图分析方法组合以获得自由能表面。我们表明,这里提出的新方法是准确的,改进了构象采样,并实现了自由能估计的快速收敛。我们通过计算溶剂化丙氨酸三肽和 Trp-cage 迷你蛋白在显式水中的构象自由能图来证明这一点。通过 REST2 框架内的副本交换方案。从联合 WSMTD 和 REST2 模拟计算的 CV 概率分布的高维切片随后使用加权直方图分析方法组合以获得自由能表面。我们表明,这里提出的新方法是准确的,改进了构象采样,并实现了自由能估计的快速收敛。我们通过计算溶剂化丙氨酸三肽和 Trp-cage 迷你蛋白在显式水中的构象自由能图来证明这一点。通过 REST2 框架内的副本交换方案。从联合 WSMTD 和 REST2 模拟计算的 CV 概率分布的高维切片随后使用加权直方图分析方法组合以获得自由能表面。我们表明,这里提出的新方法是准确的,改进了构象采样,并实现了自由能估计的快速收敛。我们通过计算溶剂化丙氨酸三肽和 Trp-cage 迷你蛋白在显式水中的构象自由能图来证明这一点。我们表明,这里提出的新方法是准确的,改进了构象采样,并实现了自由能估计的快速收敛。我们通过计算溶剂化丙氨酸三肽和 Trp-cage 迷你蛋白在显式水中的构象自由能图来证明这一点。我们表明,这里提出的新方法是准确的,改进了构象采样,并实现了自由能估计的快速收敛。我们通过计算溶剂化丙氨酸三肽和 Trp-cage 迷你蛋白在显式水中的构象自由能图来证明这一点。
更新日期:2021-10-20
down
wechat
bug