当前位置: X-MOL 学术ISME J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Macroecological distributions of gene variants highlight the functional organization of soil microbial systems
The ISME Journal ( IF 11.0 ) Pub Date : 2021-09-27 , DOI: 10.1038/s41396-021-01120-8
Arthur Escalas 1, 2 , Fabiana S Paula 3 , François Guilhaumon 1, 4 , Mengting Yuan 5 , Yunfeng Yang 6 , Linwei Wu 2 , Feifei Liu 2, 7, 8 , Jiaje Feng 2 , Yuguang Zhang 9 , Jizhong Zhou 2, 6, 10, 11
Affiliation  

The recent application of macroecological tools and concepts has made it possible to identify consistent patterns in the distribution of microbial biodiversity, which greatly improved our understanding of the microbial world at large scales. However, the distribution of microbial functions remains largely uncharted from the macroecological point of view. Here, we used macroecological models to examine how the genes encoding the functional capabilities of microorganisms are distributed within and across soil systems. Models built using functional gene array data from 818 soil microbial communities showed that the occupancy-frequency distributions of genes were bimodal in every studied site, and that their rank-abundance distributions were best described by a lognormal model. In addition, the relationships between gene occupancy and abundance were positive in all sites. This allowed us to identify genes with high abundance and ubiquitous distribution (core) and genes with low abundance and limited spatial distribution (satellites), and to show that they encode different sets of microbial traits. Common genes encode microbial traits related to the main biogeochemical cycles (C, N, P and S) while rare genes encode traits related to adaptation to environmental stresses, such as nutrient limitation, resistance to heavy metals and degradation of xenobiotics. Overall, this study characterized for the first time the distribution of microbial functional genes within soil systems, and highlight the interest of macroecological models for understanding the functional organization of microbial systems across spatial scales.



中文翻译:

基因变异的宏观生态分布突出了土壤微生物系统的功能组织

最近宏观生态学工具和概念的应用使得确定微生物生物多样性分布的一致模式成为可能,这极大地提高了我们对大规模微生物世界的理解。然而,从宏观生态学的角度来看,微生物功能的分布在很大程度上仍然是未知的。在这里,我们使用宏观生态模型来检查编码微生物功能的基因是如何在土壤系统内和跨土壤系统分布的。使用来自 818 个土壤微生物群落的功能基因阵列数据建立的模型表明,基因的占据频率分布在每个研究地点都是双峰的,并且它们的等级丰度分布最好用对数正态模型来描述。此外,基因占有率和丰度之间的关系在所有地点都是积极的。这使我们能够识别具有高丰度和普遍分布(核心)的基因以及具有低丰度和有限空间分布(卫星)的基因,并表明它们编码不同的微生物特征集。常见基因编码与主要生物地球化学循环(C、N、P 和 S)相关的微生物特性,而稀有基因编码与适应环境胁迫相关的特性,例如营养限制、对重金属的抵抗力和异生素降解。总的来说,这项研究首次描述了土壤系统中微生物功能基因的分布,并强调了宏观生态模型对于理解跨空间尺度微生物系统功能组织的兴趣。这使我们能够识别具有高丰度和普遍分布(核心)的基因以及具有低丰度和有限空间分布(卫星)的基因,并表明它们编码不同的微生物特征集。常见基因编码与主要生物地球化学循环(C、N、P 和 S)相关的微生物特性,而稀有基因编码与适应环境胁迫相关的特性,例如营养限制、对重金属的抵抗力和异生素降解。总的来说,这项研究首次描述了土壤系统中微生物功能基因的分布,并强调了宏观生态模型对于理解跨空间尺度微生物系统功能组织的兴趣。这使我们能够识别具有高丰度和普遍分布(核心)的基因以及具有低丰度和有限空间分布(卫星)的基因,并表明它们编码不同的微生物特征集。常见基因编码与主要生物地球化学循环(C、N、P 和 S)相关的微生物特性,而稀有基因编码与适应环境胁迫相关的特性,例如营养限制、对重金属的抵抗力和异生素降解。总的来说,这项研究首次描述了土壤系统中微生物功能基因的分布,并强调了宏观生态模型对于理解跨空间尺度微生物系统功能组织的兴趣。

更新日期:2021-09-28
down
wechat
bug