当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiferroic oxide BFCNT/BFCO heterojunction black silicon photovoltaic devices
Light: Science & Applications ( IF 20.6 ) Pub Date : 2021-09-26 , DOI: 10.1038/s41377-021-00644-0
Kaixin Guo 1 , Xu Wang 1 , Rongfen Zhang 1 , Zhao Fu 2 , Liangyu Zhang 2 , Guobin Ma 1 , Chaoyong Deng 1
Affiliation  

Multiferroics are being studied increasingly in applications of photovoltaic devices for the carrier separation driven by polarization and magnetization. In this work, textured black silicon photovoltaic devices are fabricated with Bi6Fe1.6Co0.2Ni0.2Ti3O18/Bi2FeCrO6 (BFCNT/BFCO) multiferroic heterojunction as an absorber and graphene as an anode. The structural and optical analyses showed that the bandgap of Aurivillius-typed BFCNT and double perovskite BFCO are 1.62 ± 0.04 eV and 1.74 ± 0.04 eV respectively, meeting the requirements for the active layer in solar cells. Under the simulated AM 1.5 G illumination, the black silicon photovoltaic devices delivered a photoconversion efficiency (η) of 3.9% with open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) of 0.75 V, 10.8 mA cm−2, and 48.3%, respectively. Analyses of modulation of an applied electric and magnetic field on the photovoltaic properties revealed that both polarization and magnetization of multiferroics play an important role in tuning the built-in electric field and the transport mechanisms of charge carriers, thus providing a new idea for the design of future high-performance multiferroic oxide photovoltaic devices.



中文翻译:


多铁氧化物BFCNT/BFCO异质结黑硅光伏器件



多铁性材料在用于由极化和磁化驱动的载流子分离的光伏器件应用中得到越来越多的研究。在这项工作中,以Bi 6 Fe 1.6 Co 0.2 Ni 0.2 Ti 3 O 18 /Bi 2 FeCrO 6 (BFCNT/BFCO)多铁异质结作为吸收体和石墨烯作为阳极制造了织构化的黑硅光伏器件。结构和光学分析表明,Aurivilius型BFCNT和双钙钛矿BFCO的带隙分别为1.62±0.04 eV和1.74±0.04 eV,满足太阳能电池活性层的要求。在模拟AM 1.5 G光照下,黑硅光伏器件的光转换效率( η )为3.9%,开路电压( V oc )、短路电流密度( J sc )和填充因子( FF )为分别为0.75V、10.8mA cm -2和48.3%。施加电场和磁场对光伏特性的调制分析表明,多铁性材料的极化和磁化在调节内置电场和载流子传输机制方面发挥着重要作用,从而为设计提供了新的思路未来高性能多铁氧化物光伏器件的研究。

更新日期:2021-09-28
down
wechat
bug