当前位置: X-MOL 学术Crit. Care › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Acute cor pulmonale in Covid-19 related acute respiratory distress syndrome
Critical Care ( IF 8.8 ) Pub Date : 2021-09-25 , DOI: 10.1186/s13054-021-03756-6
Pedro Cavaleiro 1, 2 , Paul Masi 1, 2 , François Bagate 1, 2 , Thomas d'Humières 3, 4 , Armand Mekontso Dessap 1, 2, 4
Affiliation  

Right ventricle (RV) dysfunction is a frequent complication of acute respiratory distress syndrome (ARDS). Its more severe presentation, acute cor pulmonale (ACP), is defined at echocardiography as a dilated RV (end-diastolic RV/left ventricle area ratio > 0.6) associated with the presence of septal dyskinesia. The prevalence of ACP in non-Covid-19 related ARDS (NC-ARDS) has been evaluated to be 22% [95% confidence interval (CI) 19–25%] during the first 72 h of protective mechanical ventilation [1]. A clinical risk score has been proposed to select NC-ARDS patients at risk of ACP, including four variables: pneumonia as a cause of ARDS, elevated driving pressure, severe hypoxemia and severe hypercapnia [1]. RV dysfunction has been also reported in the setting of COVID-19-related ARDS (C-ARDS) [2], but the prevalence of ACP and the validity of ACP risk score in C-ARDS patients are still unknown. We performed an observational study in the medical ICU of Henri Mondor University Hospital (Créteil, France), from March 9th 2020 to March 9th 2021 to assess the prevalence and predictors of ACP in C-ARDS.

Continuous data are expressed as the mean ± standard deviation or median [25th–75th percentiles] and were compared using the Student t test or Mann–Whitney U test, as appropriate. Categorical variables, expressed as number and percentages, were evaluated using the chi-square test or Fisher’s exact test. To evaluate independent factors associated with ACP, significant or marginally significant (p < 0.10) bivariate risk factors (using the above-mentioned tests) were examined using univariate and multivariable backward stepwise logistic regression analysis. Coefficients were computed by the method of maximum likelihood. The calibrations of model was assessed by the Hosmer–Lemeshow goodness-of-fit statistic and discrimination by the area under the receiver operating characteristics curve.

Among 282 Covid-19 patients admitted in our ICU during the study period, 175 were intubated and ventilated for C-ARDS. Fifty-eight C-ARDS patients were excluded because they had no available echocardiographic data obtained within 72 h of initiation of invasive mechanical ventilation and the remaining 117 patients were included. In our cohort, the observed prevalence of ACP (44/117, 38%, 95% confidence interval 0.29–0.47) was higher than previously described for NC-ARDS. C-ARDS patients with ACP were less likely to have diabetes or chronic kidney disease (Table 1). They were not more likely to have a thorax computed tomography angiogram performed but, if they did have the exam, they were significantly more likely to present a pulmonary embolism (Table 1). On the contrary, there was no significant association between the presence of ACP and the ACP risk score or its components (Table 1). In multivariable analysis, pulmonary embolism was the only factor associated with ACP (Table 2). Including the ACP risk score in the model yielded similar results. Patients with ACP had a trend towards more extracorporeal membrane oxygenation and required tracheostomy more frequently, but had a similar mortality than their counterparts (Table 1).

Table 1 Characteristics and outcomes of patients with Covid-19 related acute respiratory distress syndrome, with or without acute cor pulmonale
Full size table
Table 2 Univariate and multivariable analysis for acute cor pulmonale in patients with Cocid-19 related acute respiratory distress syndrome
Full size table

Our study suggests that ACP is more prevalent in C-ARDS than previously reported in NC-ARDS, and is rather driven by pulmonary vascular obstruction in this group of patients than classical risk factors favoring vascular constriction/compression (hypoxemia, hypercapnia and driving pressure). Widespread pulmonary thrombosis with microangiopathy is a characteristic histological feature of C-ARDS [3, 4]. Pulmonary embolism is reported in up to 24% of critically-ill patients with C-ARDS [5]. Our data suggests that the presence of ACP may prompt the search of pulmonary embolism by a CT-scan in C-ARDS patients.

In conclusion, ACP seems more frequent and more related to pulmonary embolism in C-ARDS as compared to NC-ARDS. These observations need to be confirmed in larger studies.

The dataset used during the current study is available from the corresponding author upon reasonable request.

  1. 1.

    Mekontso Dessap A, Boissier F, Charron C, Bégot E, Repessé X, Legras A, et al. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med. 2016;42:862–70.

    Article Google Scholar

  2. 2.

    Chotalia M, Ali M, Alderman JE, Kalla M, Parekh D, Bangash MN, et al. Right ventricular dysfunction and its association with mortality in coronavirus disease 2019 acute respiratory distress syndrome. Crit Care Med. 2021;

  3. 3.

    Maiese A, Manetti AC, La Russa R, Di Paolo M, Turillazzi E, Frati P, et al. Autopsy findings in COVID-19-related deaths: a literature review. Forensic Sci Med Pathol. 2020;

  4. 4.

    Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;NEJMoa2015432.

  5. 5.

    Roncon L, Zuin M, Barco S, Valerio L, Zuliani G, Zonzin P, et al. Incidence of acute pulmonary embolism in COVID-19 patients: Systematic review and meta-analysis. Eur J Intern Med. 2020;82:29–37.

    CAS Article Google Scholar

Download references

The authors would like to thank and all the physicians and nurses of the medical ICU, Henri Mondor Hospital, Créteil, France, who took care of the patients.

This work did not receive any funding.

Affiliations

  1. AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpitaux universitaires Henri Mondor, DMU Médecine, Service de Médecine Intensive Réanimation, 94010, Créteil, France

    Pedro Cavaleiro, Paul Masi, François Bagate & Armand Mekontso Dessap

  2. UPEC (Université Paris Est Créteil), Faculté de Santé de Créteil, IMRB, GRC CARMAS, 94010, Créteil, France

    Pedro Cavaleiro, Paul Masi, François Bagate & Armand Mekontso Dessap

  3. AP-HP, Hôpitaux universitaires Henri Mondor, Service de Physiologie, 94010, Créteil, France

    Thomas d’Humières

  4. INSERM, Unité U955, 94010, Créteil, France

    Thomas d’Humières & Armand Mekontso Dessap

Authors
  1. Pedro CavaleiroView author publications

    You can also search for this author in PubMed Google Scholar

  2. Paul MasiView author publications

    You can also search for this author in PubMed Google Scholar

  3. François BagateView author publications

    You can also search for this author in PubMed Google Scholar

  4. Thomas d’HumièresView author publications

    You can also search for this author in PubMed Google Scholar

  5. Armand Mekontso DessapView author publications

    You can also search for this author in PubMed Google Scholar

Contributions

All authors were involved in study conception and design. PM, FB and AMD conceived the study. PC, PM, FB and TD collected data. PC and AMD performed statistical analyses. PC and AMD wrote the original draft of the manuscript. All authors were involved in interpreting data and reviewing the final manuscript.

Corresponding authors

Correspondence to Paul Masi or Armand Mekontso Dessap.

Ethics approval and consent to participate

This study was performed in accordance with the Helsinki Declaration and was approved by the ethics commission of the French Intensive Care Society. Due to the observational nature of the study, patient consent waived as per the French law.

Consent for publication

Not applicable.

Competing interests

Authors declare no competing interest for this work.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

Verify currency and authenticity via CrossMark

Cite this article

Cavaleiro, P., Masi, P., Bagate, F. et al. Acute cor pulmonale in Covid-19 related acute respiratory distress syndrome. Crit Care 25, 346 (2021). https://doi.org/10.1186/s13054-021-03756-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13054-021-03756-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative



中文翻译:

Covid-19相关急性呼吸窘迫综合征中的急性肺心病

右心室 (RV) 功能障碍是急性呼吸窘迫综合征 (ARDS) 的常见并发症。其更严重的表现,急性肺心病(ACP),在超声心动图上被定义为扩张的 RV(舒张末期 RV/左心室面积比 > 0.6),与室间隔运动障碍的存在相关。在保护性机械通气的前 72 小时内,ACP 在非 Covid-19 相关 ARDS (NC-ARDS) 中的流行率为 22% [95% 置信区间 (CI) 19–25%] [1]。已提出临床风险评分来选择有 ACP 风险的 NC-ARDS 患者,包括四个变量:肺炎作为 ARDS 的病因、驾驶压力升高、严重低氧血症和严重高碳酸血症[1]。在 COVID-19 相关 ARDS(C-ARDS)[2] 中也报告了 RV 功能障碍,但 C-ARDS 患者中 ACP 的患病率和 ACP 风险评分的有效性仍然未知。我们在 Henri Mondor 大学医院 (Créteil,

连续数据表示为平均值 ± 标准差或中位数 [第 25-75 个百分位数],并酌情使用 Student t 检验或 Mann-Whitney U 检验进行比较。分类变量以数量和百分比表示,使用卡方检验或 Fisher 精确检验进行评估。为了评估与 ACP 相关的独立因素, 使用单变量和多变量向后逐步逻辑回归分析检查显着或边际显着 ( p < 0.10) 双变量风险因素(使用上述测试)。系数通过最大似然法计算。模型的校准通过 Hosmer-Lemeshow 拟合优度统计和接收者操作特征曲线下面积的区​​分来评估。

在研究期间入住我们 ICU 的 282 名 Covid-19 患者中,175 名因 C-ARDS 接受了插管和通气。58 名 C-ARDS 患者被排除在外,因为他们没有在开始有创机械通气 72 小时内获得的可用超声心动图数据,其余 117 名患者被纳入。在我们的队列中,观察到的 ACP 患病率(44/117、38%、95% 置信区间 0.29-0.47)高于先前描述的 NC-ARDS。患有 ACP 的 C-ARDS 患者患糖尿病或慢性肾病的可能性较小(表 1)。他们不太可能进行胸部计算机断层扫描血管造影,但如果他们进行了检查,他们出现肺栓塞的可能性要大得多(表 1)。相反,ACP 的存在与 ACP 风险评分或其组成部分之间没有显着关联(表 1)。在多变量分析中,肺栓塞是与 ACP 相关的唯一因素(表 2)。在模型中包括 ACP 风险评分产生了类似的结果。ACP 患者有更多的体外膜肺氧合的趋势,需要更频繁地进行气管切开术,但死亡率与他们的同行相似(表 1)。

表 1 Covid-19 相关急性呼吸窘迫综合征患者的特征和结局,伴或不伴急性肺心病
全尺寸表
表2 Cocid-19相关急性呼吸窘迫综合征患者急性肺源性心脏病的单变量和多变量分析
全尺寸表

我们的研究表明,ACP 在 C-ARDS 中比以前在 NC-ARDS 中报道的更普遍,并且在这组患者中是由肺血管阻塞而不是有利于血管收缩/压迫的经典危险因素(低氧血症、高碳酸血症和驱动压)驱动的. 伴有微血管病的广泛肺血栓形成是 C-ARDS 的一个特征性组织学特征 [3, 4]。据报道,多达 24% 的 C-ARDS 危重患者出现肺栓塞 [5]。我们的数据表明,ACP 的存在可能会促使通过 CT 扫描在 C-ARDS 患者中寻找肺栓塞。

总之,与 NC-ARDS 相比,ACP 似乎更频繁,并且与 C-ARDS 中的肺栓塞更相关。这些观察结果需要在更大的研究中得到证实。

当前研究中使用的数据集可根据合理要求从相应的作者处获得。

  1. 1.

    Mekontso Dessap A、Boissier F、Charron C、Bégot E、Repessé X、Legras A 等。急性呼吸窘迫综合征保护性通气期间的急性肺心病:患病率、预测因素和临床影响。重症监护医学。2016 年;42:862-70。

    文章 谷歌学术

  2. 2.

    Chotalia M、Ali M、Alderman JE、Kalla M、Parekh D、Bangash MN 等。右心室功能障碍及其与冠状病毒病 2019 急性呼吸窘迫综合征死亡率的关系。暴击护理医学。2021;

  3. 3.

    Maiese A、Manetti AC、La Russa R、Di Paolo M、Turillazzi E、Frati P 等。COVID-19 相关死亡的尸检结果:文献综述。法医 Sci Med Pathol。2020 年;

  4. 4.

    Ackermann M、Verleden SE、Kuehnel M、Haverich A、Welte T、Laenger F 等。Covid-19 中的肺血管内皮炎、血栓形成和血管生成。N Engl J Med。2020;NEJMoa2015432。

  5. 5.

    Roncon L、Zuin M、Barco S、Valerio L、Zuliani G、Zonzin P 等。COVID-19 患者急性肺栓塞的发生率:系统评价和荟萃分析。Eur J 实习医生。2020;82:29-37。

    CAS 文章 Google Scholar

下载参考

作者要感谢法国 Créteil 的 Henri Mondor 医院内科 ICU 的所有医生和护士,他们照顾了患者。

这项工作没有得到任何资助。

隶属关系

  1. AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpitaux universitaires Henri Mondor, DMU Médecine, Service de Médecine Intensive Réanimation, 94010, Créteil, France

    佩德罗·卡瓦莱罗、保罗·马西、弗朗索瓦·巴盖特和阿曼德·梅孔佐·德萨普

  2. UPEC (Université Paris Est Créteil), Faculté de Santé de Créteil, IMRB, GRC CARMAS, 94010, Créteil, France

    佩德罗·卡瓦莱罗、保罗·马西、弗朗索瓦·巴盖特和阿曼德·梅孔佐·德萨普

  3. AP-HP, Hôpitaux universitaires Henri Mondor, Service de Physiology, 94010, Créteil, France

    托马斯·德·休米埃

  4. INSERM, Unité U955, 94010, Créteil, France

    Thomas d'Humières & Armand Mekontso Dessap

作者
  1. Pedro Cavaleiro查看作者出版物

    您也可以在PubMed Google Scholar搜索此作者 

  2. Paul Masi查看作者出版物

    您也可以在PubMed Google Scholar搜索此作者 

  3. François Bagate查看作者出版物

    您也可以在PubMed Google Scholar搜索此作者 

  4. Thomas d'Humières查看作者出版物

    您也可以在PubMed Google Scholar搜索此作者 

  5. Armand Mekontso Dessap查看作者出版物

    您也可以在PubMed Google Scholar搜索此作者 

贡献

所有作者都参与了研究的构思和设计。PM、FB 和 AMD 构思了这项研究。PC、PM、FB 和 TD 收集数据。PC 和 AMD 进行了统计分析。PC 和 AMD 撰写了手稿的原稿。所有作者都参与了数据解释和最终手稿的审查。

通讯作者

与 Paul Masi 或 Armand Mekontso Dessap 的通信。

伦理批准和同意参与

这项研究是根据赫尔辛基宣言进行的,并得到了法国重症监护学会伦理委员会的批准。由于研究的观察性质,根据法国法律放弃了患者同意。

同意发表

不适用。

利益争夺

作者声明对这项工作没有竞争利益。

出版商说明

Springer Nature 对已发布地图和机构附属机构中的管辖权主张保持中立。

开放获取本文根据知识共享署名 4.0 国际许可协议获得许可,该许可允许以任何媒体或格式使用、共享、改编、分发和复制,只要您适当注明原作者和来源,提供链接到知识共享许可,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果文章的知识共享许可中未包含材料,并且您的预期用途未得到法律法规的允许或超出允许的用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。

重印和许可

通过 CrossMark 验证货币和真实性

引用这篇文章

Cavaleiro, P., Masi, P., Bagate, F.等。Covid-19 相关急性呼吸窘迫综合征中的急性肺心病。暴击护理 25, 346 (2021)。https://doi.org/10.1186/s13054-021-03756-6

下载引文

  • 收到

  • 接受

  • 发表

  • DOI : https://doi.org/10.1186/s13054-021-03756-6

分享此文章

您与之共享以下链接的任何人都可以阅读此内容:

抱歉,本文目前没有可共享的链接。

由 Springer Nature SharedIt 内容共享计划提供

更新日期:2021-09-28
down
wechat
bug