当前位置: X-MOL 学术bioRxiv. Biophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Probing nanomotion of single bacteria with graphene drums
bioRxiv - Biophysics Pub Date : 2021-09-24 , DOI: 10.1101/2021.09.21.461186
Irek Roslon , Aleksandre Japaridze , Peter Steeneken , Cees Dekker , Farbod Alijani

Motion is a key characteristic of every form of life1. Even at the microscale, it has been reported that colonies of bacteria can generate nanomotion on mechanical cantilevers2, but the origin of these nanoscale vibrations has remained unresolved3,4. Here, we present a novel technique using drums made of ultrathin bilayer graphene, where the nanomotion of single bacteria can be measured in its aqueous growth environment. A single E. coli cell is found to generate random oscillations with amplitudes of up to 60 nm, exerting forces of up to 6 nN to its environment. Using mutant strains, we are able to pinpoint the bacterial flagella as the main source of nanomotion. By real-time tracing of changes in nanomotion upon administering antibiotics, we demonstrate that graphene drums can perform antibiotic susceptibility testing with single-cell sensitivity. These findings deepen our understanding of processes underlying cellular dynamics, and pave the way towards high throughput and parallelized rapid screening of the effectiveness of antibiotics in bacterial infections with graphene devices.

中文翻译:

用石墨烯鼓探测单个细菌的纳米运动

运动是每种生命形式1的关键特征。即使在微观尺度上,据报道,细菌菌落可以在机械悬臂2上产生纳米运动,但这些纳米尺度振动的起源仍未得到解决3,4。在这里,我们提出了一种使用由超薄双层石墨烯制成的鼓的新技术,其中可以在其水性生长环境中测量单个细菌的纳米运动。单个大肠杆菌发现细胞产生幅度高达 60 nm 的随机振荡,对其环境施加高达 6 nN 的力。使用突变菌株,我们能够确定细菌鞭毛是纳米运动的主要来源。通过实时追踪施用抗生素后纳米运动的变化,我们证明石墨烯鼓可以以单细胞敏感性进行抗生素敏感性测试。这些发现加深了我们对细胞动力学基础过程的理解,并为使用石墨烯装置实现高通量和并行快速筛选抗生素在细菌感染中的有效性铺平了道路。
更新日期:2021-09-27
down
wechat
bug