当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding the anchoring and catalytic effect of the Co@C2N monolayer in lithium–selenium batteries: a first-principles study
Nanoscale ( IF 5.8 ) Pub Date : 2021-08-31 , DOI: 10.1039/d1nr03406e
Shuwei Tang 1 , Chenchen Liu 1 , Wen Sun 1 , Xu Zhang 1 , Ding Shen 1 , Wei Dong 1 , Shaobin Yang 1
Affiliation  

The practical applications of lithium–selenium (Li–Se) batteries are impeded due to the low utilization of active selenium, sluggish kinetics, and volume change. The development of highly efficient host materials to suppress high-order polyselenide shuttling and accelerate Li2Se conversion is essential for Li–Se batteries. Herein, a theoretical design of a Co@C2N monolayer as a host material for ultra-high areal capacity Li–Se batteries is proposed by first-principles calculations. The investigations of the lowest energy configurations, binding energies, and the charge transfer indicate that the Co@C2N monolayer could alleviate the reciprocating motion of high-order polyselenides and improve the cycling performance. Further electronic property calculations show that the semi-metallic characteristics of the Co@C2N monolayer material are retained even after chemical adsorption with Se8 or Li2Sen molecules, which is beneficial for the utilization of active selenium. In addition, the crucial catalytic role of the Co@C2N monolayer is investigated and the results indicate that the Co@C2N monolayer could facilitate the formation and decomposition of Li2Se molecules during the discharge and charge processes. Our present work would not only provide a deep understanding on the anchoring and catalytic effect of the Co@C2N monolayer, but also demonstrate a general principle for the rational design and screening of advanced materials for high energy density Li–Se batteries.

中文翻译:

了解锂硒电池中 Co@C2N 单层的锚定和催化作用:第一性原理研究

由于活性硒利用率低、动力学缓慢和体积变化,锂硒(Li-Se)电池的实际应用受到阻碍。开发高效的主体材料以抑制高阶多硒化物穿梭并加速 Li 2 Se 转化对于 Li-Se 电池至关重要。在此,通过第一性原理计算提出了一种 Co@C 2 N 单层作为超高面积容量 Li-Se 电池主体材料的理论设计。最低能量构型、结合能和电荷转移的研究表明 Co@C 2N单层可以减轻高阶聚硒化物的往复运动,提高循环性能。进一步的电子性能计算表明,即使在与Se 8或Li 2 Se n分子进行化学吸附后,Co@C 2 N 单层材料的半金属特性也得以保留,这有利于活性硒的利用。此外,研究了 Co@C 2 N 单层的关键催化作用,结果表明 Co@C 2 N 单层可以促进 Li 2的形成和分解。放电和充电过程中的硒分子。我们目前的工作不仅可以深入了解 Co@C 2 N 单层的锚定和催化作用,而且还展示了合理设计和筛选用于高能量密度 Li-Se 电池的先进材料的一般原则。
更新日期:2021-09-27
down
wechat
bug