当前位置: X-MOL 学术ACS Appl. Nano Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum Transport in DNA Heterostructures: Implications for Nanoelectronics
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2021-09-24 , DOI: 10.1021/acsanm.1c01087
Sunil R. Patil 1 , Hashem Mohammad 2 , Vivek Chawda 3 , Niraj Sinha 3 , Reman Kumar Singh 4 , Jianqing Qi 2 , M P. Anantram 2
Affiliation  

Understanding quantum transport through DNA-based heterostructures is a key to advancing the field of DNA nanoelectronics, where quantum interference would play a significant role. Electronic “barriers” and “wells” can be constructed in DNA using adenine–thymine (AT) and guanine–cytosine (GC) base pairs, respectively, as their ionization potentials differ significantly. We investigate the influence of the width of barriers and wells on hole transport. Density functional theory calculations are performed on energy-minimized DNA structures, followed by quantum transport calculations including decoherence. The device physics is probed by constructing a model Hamiltonian and selectively turning off long-range and interstrand interactions. Major outcomes of the study include the following: (1) DNA heterostructures complement the solid-state semiconductor counterparts; that is, conductance decreases sharply and marginally with an increase in barrier and well width, respectively; (2) quantum interference in DNA heterostructures is robust, as seen by clear peaks in the transmission resonance even with decoherence; (3) DNA conformation has a profound role in deciding the conductance of equivalent heterostructures; and (4) structural differences lead to closer HOMO energy levels and more delocalized states. As a result, transport can be efficient in some strands even with weaker π–π orbital overlap.

中文翻译:

DNA 异质结构中的量子传输:对纳米电子学的影响

了解通过基于 DNA 的异质结构的量子传输是推进 DNA 纳米电子学领域的关键,量子干涉将在其中发挥重要作用。可以分别使用腺嘌呤-胸腺嘧啶 (AT) 和鸟嘌呤-胞嘧啶 (GC) 碱基对在 DNA 中构建电子“屏障”和“孔”,因为它们的电离电位差异很大。我们研究了障碍和井的宽度对空穴传输的影响。密度泛函理论计算是对能量最小化的 DNA 结构进行的,然后是包括退相干在内的量子传输计算。通过构建模型哈密顿量并选择性地关闭长程和链间相互作用来探测器件物理。研究的主要结果包括:(1) DNA异质结构与固态半导体对应物互补;也就是说,电导率分别随着势垒和阱宽度的增加而急剧下降;(2) DNA 异质结构中的量子干涉是稳健的,即使在退相干的情况下,也可以从传输共振中的清晰峰值看出;(3) DNA构象在决定等效异质结构的电导方面具有深远的作用;(4) 结构差异导致更接近的 HOMO 能级和更离域的状态。因此,即使 π-π 轨道重叠较弱,某些链中的传输也可以是有效的。从传输共振中的清晰峰值可以看出,即使有退相干;(3) DNA构象在决定等效异质结构的电导方面具有深远的作用;(4) 结构差异导致更接近的 HOMO 能级和更离域的状态。因此,即使 π-π 轨道重叠较弱,某些链中的传输也可以是有效的。从传输共振中的清晰峰值可以看出,即使有退相干;(3) DNA构象在决定等效异质结构的电导方面具有深远的作用;(4) 结构差异导致更接近的 HOMO 能级和更离域的状态。因此,即使 π-π 轨道重叠较弱,某些链中的传输也可以是有效的。
更新日期:2021-10-22
down
wechat
bug