当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dumbbell-Like Fe3O4@N-Doped Carbon@2H/1T-MoS2 with Tailored Magnetic and Dielectric Loss for Efficient Microwave Absorbing
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-09-24 , DOI: 10.1021/acsami.1c13852
Mingqiang Ning 1, 2 , Zhenkuang Lei 1, 2 , Guoguo Tan 1, 2 , Qikui Man 1, 2 , JingBo Li 3 , Run-Wei Li 1, 2
Affiliation  

Ferroferric oxide (Fe3O4)/C composites have received much attention as a result of converting electromagnetic waves to heat for harvesting efficient electromagnetic wave (EMW) absorbing performance. However, the practical EMW absorbing of these absorbers is still greatly hindered by the unmatched impedance properties and limited EMW absorbing ability. Tuning the morphologies at nanoscale and assembling the nanoarchitecture construction are essential to address this issue. Herein, dumbbell-like Fe3O4@N-doped carbon (NC)@2H/1T-MoS2 yolk–shell nanostructures are rationally designed and fabricated via a facile etching and wet chemical synthesis strategy. By manipulating the etching time toward the magnetic Fe3O4 component, the dielectric and magnetic loss of absorbers could be well-tuned, thus achieving the optimized impedance characteristics. As a result, the maximum refection losses (RLmaxs) of Fe3O4@NC-9h and Fe3O4@NC-15h are −19.8 dB@7.9 GHz and −39.5 dB@8.3 GHz, respectively. Moreover, the MoS2 nanosheets with a mixed 2H/1T phase anchored on Fe3O4@NC-15h (Fe3O4@NC-15h@MoS2) further boost the RLmax to −68.9 dB@5.8 GHz with an effective absorbing bandwidth of ∼5.25 GHz. The tailored synergistic effect between dielectric and magnetic loss and the introduced interfacial polarization (Fe3O4@NC/MoS2) are discussed to explain the drastically enhanced microwave absorbing ability. This work opens up new possibilities for effective manipulation of electromagnetic wave attenuation performance in magnetic–dielectric-type nanostructures.

中文翻译:

哑铃状 Fe3O4@N-Doped Carbon@2H/1T-MoS2 具有定制磁损耗和介电损耗以实现高效微波吸收

氧化铁 (Fe 3 O 4 )/C 复合材料由于将电磁波转化为热量以获取有效的电磁波 (EMW) 吸收性能而备受关注。然而,这些吸收器的实际电磁波吸收仍然受到不匹配的阻抗特性和有限的电磁波吸收能力的极大阻碍。在纳米尺度上调整形态并组装纳米结构结构对于解决这个问题至关重要。在此,通过合理设计和制造哑铃状 Fe 3 O 4 @N 掺杂碳 (NC)@2H/1T-MoS 2蛋黄-壳纳米结构一种简单的蚀刻和湿化学合成策略。通过控制对磁性 Fe 3 O 4组分的蚀刻时间,可以很好地调整吸收体的介电和磁损耗,从而实现优化的阻抗特性。因此,Fe 3 O 4 @NC-9h 和 Fe 3 O 4 @NC-15h的最大反射损耗(RL max s)分别为 -19.8 dB@7.9 GHz 和 -39.5 dB@8.3 GHz。此外,具有锚定在 Fe 3 O 4 @NC-15h (Fe 3 O 4 @NC-15h@MoS 2 )上的混合 2H/1T 相的 MoS 2纳米片进一步提高了 RL最大至 −68.9 dB@5.8 GHz,有效吸收带宽约为 5.25 GHz。讨论了介电损耗和磁损耗之间的定制协同效应以及引入的界面极化(Fe 3 O 4 @NC/MoS 2),以解释显着增强的微波吸收能力。这项工作为有效操纵磁介电型纳米结构中的电磁波衰减性能开辟了新的可能性。
更新日期:2021-10-06
down
wechat
bug