当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Significantly Enhanced Photocatalytic CO2 Reduction by Surface Amorphization of Cocatalysts
Small ( IF 13.0 ) Pub Date : 2021-09-24 , DOI: 10.1002/smll.202102105
Qin Chen 1, 2 , Weihao Mo 1, 2 , Guodong Yang 2 , Shuxian Zhong 1 , Hongjun Lin 1 , Jianrong Chen 1 , Song Bai 2
Affiliation  

Rational phase engineering of reduction cocatalyst offers a promising route to modulate the photocatalytic activity and selectivity in the conversion of CO2 to chemical feedstocks. However, it remains a great challenge to choose a suitable phase given that high-crystallinity phase is more conducive to the charge transfer and separation, while amorphous phase is more favorable for the adsorption and activation of CO2 molecules. To resolve this dilemma, herein, with Pd as a well-defined model, a surface amorphization strategy has been developed to fabricate crystalline@amorphous semi-core-shell cocatalysts based on the transformation of outer layer atoms of crystalline cocatalysts to disorder phase. According to the theoretical and experimental analysis, in the heterostructured cocatalysts, crystalline core shuttles the photoexcited electrons from light-harvesting semiconductor to amorphous shell due to its strong electronic coupling with both components. Meanwhile, amorphous shell provides efficient active sites for preferential activation and conversion of CO2 and suppression of undesirable proton reduction. Benefiting from the synergistic effects between crystalline core and amorphous shell, the optimized heterophase cocatalyst with suitable thickness of amorphous shell achieves superior CO (22.2 µmol gcat−1 h−1) and CH4 (38.1 µmol gcat−1 h−1) formation rates with considerable selectivity and high stability in comparison with crystalline and amorphous counterparts.

中文翻译:


通过助催化剂表面非晶化显着增强光催化二氧化碳还原



还原助催化剂的合理相工程为调节CO 2转化为化学原料的光催化活性和选择性提供了一条有前途的途径。然而,由于高结晶度相更有利于电荷转移和分离,而非晶相更有利于CO 2分子的吸附和活化,因此选择合适的相仍然是一个巨大的挑战。为了解决这一困境,本文以 Pd 作为明确的模型,开发了一种表面非晶化策略,基于结晶助催化剂的外层原子向无序相的转变来制造结晶@非晶半核壳助催化剂。根据理论和实验分析,在异质结构助催化剂中,晶体核由于其与两种组分的强电子耦合而将光生电子从光捕获半导体穿梭到非晶壳。同时,无定形壳为CO 2的优先活化和转化以及抑制不期望的质子还原提供了有效的活性位点。受益于结晶核和非晶壳之间的协同效应,具有合适非晶壳厚度的优化多相助催化剂实现了优异的CO (22.2 µmol g cat -1 h -1 ) 和CH 4 (38.1 µmol g cat -1 h -1 )与结晶和非晶对应物相比,形成速率具有相当大的选择性和高稳定性。
更新日期:2021-11-11
down
wechat
bug