当前位置: X-MOL 学术arXiv.cs.SY › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Robust Adaptive Approach to Dynamic Control of Soft Continuum Manipulators
arXiv - CS - Systems and Control Pub Date : 2021-09-23 , DOI: arxiv-2109.11388
Amirhossein Kazemipour, Oliver Fischer, Yasunori Toshimitsu, Ki Wan Wong, Robert K. Katzschmann

Soft robots are made of compliant and deformable materials and can perform tasks challenging for conventional rigid robots. The inherent compliance of soft robots makes them more suitable and adaptable for interactions with humans and the environment. However, this preeminence comes at a cost: their continuum nature makes it challenging to develop robust model-based control strategies. Specifically, an adaptive control approach addressing this challenge has not yet been applied to physical soft robotic arms. This work presents a reformulation of dynamics for a soft continuum manipulator using the Euler-Lagrange method. The proposed model eliminates the simplifying assumption made in previous works and provides a more accurate description of the robot's inertia. Based on our model, we introduce a task-space adaptive control scheme. This controller is robust against model parameter uncertainties and unknown input disturbances. The controller is implemented on a physical soft continuum arm. A series of experiments were carried out to validate the effectiveness of the controller in task-space trajectory tracking under different payloads. The controller outperforms the state-of-the-art method both in terms of accuracy and robustness. Moreover, the proposed model-based control design is flexible and can be generalized to any continuum robotic arm with an arbitrary number of continuum segments.

中文翻译:

软连续体机械臂动态控制的鲁棒自适应方法

软机器人由柔顺且可变形的材料制成,可以执行传统刚性机器人具有挑战性的任务。软机器人固有的顺从性使它们更适合和适应与人类和环境的交互。然而,这种卓越是有代价的:它们的连续性使得开发强大的基于模型的控制策略具有挑战性。具体来说,解决这一挑战的自适应控制方法尚未应用于物理软机械臂。这项工作提出了使用 Euler-Lagrange 方法对软连续体机械手的动力学进行重新表述。所提出的模型消除了先前工作中所做的简化假设,并提供了对机器人惯性的更准确描述。基于我们的模型,我们引入了任务空间自适应控制方案。该控制器对模型参数的不确定性和未知的输入干扰具有鲁棒性。控制器在物理软连续臂上实现。进行了一系列实验以验证控制器在不同有效载荷下任务空间轨迹跟踪的有效性。该控制器在准确性和鲁棒性方面都优于最先进的方法。此外,所提出的基于模型的控制设计是灵活的,可以推广到任何具有任意数量连续段的连续机械臂。进行了一系列实验以验证控制器在不同有效载荷下任务空间轨迹跟踪的有效性。该控制器在准确性和鲁棒性方面都优于最先进的方法。此外,所提出的基于模型的控制设计是灵活的,可以推广到任何具有任意数量连续段的连续机械臂。进行了一系列实验以验证控制器在不同有效载荷下任务空间轨迹跟踪的有效性。该控制器在准确性和鲁棒性方面都优于最先进的方法。此外,所提出的基于模型的控制设计是灵活的,可以推广到任何具有任意数量连续段的连续机械臂。
更新日期:2021-09-24
down
wechat
bug