当前位置: X-MOL 学术Phys. Rev. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanopores in Atomically Thin 2D Nanosheets Limit Aqueous Single-Stranded DNA Transport
Physical Review Letters ( IF 8.1 ) Pub Date : 2021-09-24 , DOI: 10.1103/physrevlett.127.138103
Alex Smolyanitsky 1 , Binquan Luan 2
Affiliation  

Nanopores in 2D materials are highly desirable for DNA sequencing, yet achieving single-stranded DNA (ssDNA) transport through them is challenging. Using density functional theory calculations and molecular dynamics simulations we show that ssDNA transport through a pore in monolayer hexagonal boron nitride (h-BN) is marked by a basic nanomechanical conflict. It arises from the notably inhomogeneous flexural rigidity of ssDNA and causes high friction via transient DNA desorption costs exacerbated by solvation effects. For a similarly sized pore in bilayer h-BN, its self-passivated atomically smooth edge enables continuous ssDNA transport. Our findings shed light on the fundamental physics of biopolymer transport through pores in 2D materials.

中文翻译:


原子薄二维纳米片中的纳米孔限制水性单链 DNA 运输



二维材料中的纳米孔非常适合 DNA 测序,但通过它们实现单链 DNA (ssDNA) 传输具有挑战性。利用密度泛函理论计算和分子动力学模拟,我们表明单链 DNA 通过单层六方氮化硼 (h-BN) 孔的传输具有基本的纳米力学冲突。它是由 ssDNA 明显不均匀的弯曲刚度引起的,并通过瞬时 DNA 解吸成本引起高摩擦,而溶剂化效应加剧了这种成本。对于双层 h-BN 中类似大小的孔,其自钝化原子光滑边缘能够实现连续的 ssDNA 传输。我们的研究结果揭示了生物聚合物通过二维材料孔隙传输的基本物理原理。
更新日期:2021-09-24
down
wechat
bug