当前位置: X-MOL 学术Phys. Rev. E › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ion transport in electrolytes of dielectric nanodevices
Physical Review E ( IF 2.2 ) Pub Date : 2021-09-24 , DOI: 10.1103/physreve.104.035307
Manman Ma 1 , Zhenli Xu 2 , Liwei Zhang 3
Affiliation  

Ion transport in electrolytes with nanoscale confinements is of great importance in many fields such as nanofluidics and electrochemical energy devices. The mobility and conductance for ions are often described by the classical Debye-Hückel-Onsager (DHO) theory but this theory fails for ions near dielectric interfaces. We propose a generalized DHO theory by using the Wentzel-Kramers-Brillouin techniques for the solution of the Onsager-Fuoss equation with variable coefficients. The theory allows to quantitatively measure physical quantities of ion transport in nanodevices and is demonstrated to well explain the abnormal increase or decrease of the ionic mobility tuned via the dielectric mismatch. By numerical calculations, our theory unravels the crucial role of the size of confinements and the ionic concentration on the ion transport, and demonstrates that the dielectric polarization can provide a giant enhancement on the conductance of electrolytes in nanodevices. This mechanism provides a practical guide for related nanoscale technologies with controllable transport properties.

中文翻译:

介电纳米器件电解质中的离子传输

具有纳米级限制的电解质中的离子传输在许多领域都非常重要,例如纳米流体和电化学能源设备。离子的迁移率和电导率通常由经典的 Debye-Hückel-Onsager (DHO) 理论描述,但该理论不适用于介电界面附近的离子。我们通过使用 Wentzel-Kramers-Brillouin 技术提出了广义 DHO 理论,用于求解具有可变系数的 Onsager-Fuoss 方程。该理论允许定量测量纳米器件中离子传输的物理量,并被证明可以很好地解释通过介电失配调节的离子迁移率的异常增加或减少。通过数值计算,我们的理论揭示了限制大小和离子浓度对离子传输的关键作用,并证明介电极化可以极大地提高纳米器件中电解质的电导率。该机制为具有可控传输特性的相关纳米级技术提供了实用指南。
更新日期:2021-09-24
down
wechat
bug