当前位置: X-MOL 学术Phys. Rev. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transfer matrix study of the Anderson transition in non-Hermitian systems
Physical Review B ( IF 3.2 ) Pub Date : 2021-09-24 , DOI: 10.1103/physrevb.104.104203
Xunlong Luo 1 , Tomi Ohtsuki 2 , Ryuichi Shindou 3, 4
Affiliation  

The Anderson transition driven by non-Hermitian (NH) disorder has been extensively studied in recent years. In this paper, we present in-depth transfer matrix analyses of the Anderson transition in three NH systems, NH Anderson, U(1), and Peierls models in three-dimensional systems. The first model belongs to NH class AI, whereas the second and the third ones to NH class A. We first argue a general validity of the transfer matrix analysis in NH systems, and clarify the symmetry properties of the Lyapunov exponents, scattering (S) matrix and two-terminal conductance in these NH models. The unitarity of the S matrix is violated in NH systems, where the two-terminal conductance can take arbitrarily large values. Nonetheless, we show that the transposition symmetry of a Hamiltonian leads to the symmetric nature of the S matrix as well as the reciprocal symmetries of the Lyapunov exponents and conductance in certain ways in these NH models. Using the transfer matrix method, we construct a phase diagram of the NH Anderson model for various complex single-particle energy E. At E=0, the phase diagram as well as critical properties become completely symmetric with respect to an exchange of real and imaginary parts of on-site NH random potentials. We show that the symmetric nature at E=0 is a general feature for any NH bipartite-lattice models with the on-site NH random potentials. Finite size scaling data are fitted by polynomial functions, from which we determine the critical exponent ν at different single-particle energies and system parameters of the NH models. We conclude that the critical exponents of the NH class AI and the NH class A are ν=1.19±0.01 and ν=1.00±0.04, respectively. In the NH models, a distribution of the two-terminal conductance is not Gaussian. Instead, it contains small fractions of huge conductance values, which come from rare-event states with huge transmissions amplified by on-site NH disorders. Nonetheless, a geometric mean of the conductance enables the finite-size scaling analysis. We show that the critical exponents obtained from the conductance analysis are consistent with those from the localization length in these three NH models.

中文翻译:

非厄米系统中安德森跃迁的传递矩阵研究

近年来,由非厄米 (NH) 障碍驱动的安德森过渡得到了广泛的研究。在本文中,我们对三个 NH 系统、NH Anderson、U(1) 和 3D 系统中的 Peierls 模型中的 Anderson 转变进行了深入的传递矩阵分析。第一个型号属于NH类人工智能,而第二个和第三个是 NH A 类。我们首先论证了 NH 系统中传递矩阵分析的一般有效性,并阐明了李雅普诺夫指数的对称性,散射() 矩阵和两端电导在这些 NH 模型中。统一性NH 系统中违反了矩阵,其中两端电导可以取任意大的值。尽管如此,我们表明哈密顿量的转置对称性导致了在这些 NH 模型中,矩阵以及李雅普诺夫指数和电导的互反对称性在某些方面。使用传递矩阵方法,我们构建了各种复杂单粒子能量的 NH Anderson 模型的相图. 在=0,相对于现场 NH 随机势的实部和虚部的交换,相图以及关键特性变得完全对称。我们证明了对称性在=0是具有现场 NH 随机势的任何 NH 二分格模型的一般特征。有限尺寸缩放数据由多项式函数拟合,我们从中确定临界指数ν在不同的单粒子能量和 NH 模型的系统参数下。我们得出结论,NH 类的临界指数人工智能 和NH A类是 ν=1.19±0.01ν=1.00±0.04, 分别。在 NH 模型中,两端电导的分布不是高斯分布。相反,它包含一小部分巨大的电导值,这些值来自罕见事件状态,具有被现场 NH 障碍放大的巨大传输。尽管如此,电导的几何平均值使有限尺寸的缩放分析成为可能。我们表明,从电导分析获得的关键指数与这三个 NH 模型中的定位长度一致。
更新日期:2021-09-24
down
wechat
bug