当前位置: X-MOL 学术Atmos. Meas. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dealing with Spatial Heterogeneity in Pointwise to Gridded Data Comparisons
Atmospheric Measurement Techniques ( IF 3.8 ) Pub Date : 2021-09-24 , DOI: 10.5194/amt-2021-253
Amir H. Souri , Kelly Chance , Kang Sun , Xiong Liu , Matthew S. Johnson

Abstract. Atmospheric modelers and the trace gas retrieval community typically presuppose that pointwise measurements, which roughly represent the element of space, should compare well with satellite (model) pixels (grids). This assumption implies that the field of interest must possess a high degree of spatial homogeneity within the pixels (grids), which may not hold true for species with short atmospheric lifetimes or in the proximity of plumes. Results of this assumption often lead to a perception of a nonphysical discrepancy between data, resulting from different spatial scales, potentially making the comparisons prone to overinterpretation. Semivariogram is a mathematical expression of spatial variability in discrete data. Modeling the semivariogram behavior permits carrying out spatial optimal linear prediction of a random process field using kriging. Kriging can extract the spatial information (variance) pertaining to a specific scale, which in turn translating pointwise data to a grid space with quantified uncertainty such that a grid-to-grid comparison can be made. Here, using both theoretical and real-world experiments, we demonstrate that this classical geostatistical approach can be well adapted to solving problems in evaluating model-predicted or satellite-derived atmospheric trace gases. This study demonstrates that satellite validation procedures must take kriging variance and satellite spatial response functions into account. We present the comparison of Ozone Monitoring Instrument (OMI) tropospheric NO2 columns against 11 Pandora Spectrometer Instrument (PSI) systems during the DISCOVER-AQ campaign over Houston. The least-squares fit to the paired data shows a low slope (OMI=0.76×PSI+1.18×1015 molecules cm−2, r2=0.67) which is indicative of varying biases in OMI. This perceived slope, induced by the problem of spatial scale, disappears in the comparison of the convolved kriged PSI and OMI (0.96×PSI+0.66×1015 molecules cm−2, r2=0.72) illustrating that OMI possibly has a constant systematic bias over the area. To avoid gross errors in comparisons made between gridded data versus pointwise measurements, we argue that the concept of semivariogram (or spatial auto-correlation) should be taken into consideration, particularly if the field exhibits a strong degree of spatial heterogeneity at the scale of satellite and/or model footprints.

中文翻译:

处理逐点到网格数据比较中的空间异质性

摘要。大气建模者和痕量气体检索社区通常预先假设粗略代表空间元素的逐点测量应该与卫星(模型)像素(网格)进行很好的比较。这个假设意味着感兴趣的领域必须在像素(网格)内具有高度的空间均匀性,这可能不适用于大气寿命短或靠近羽流的物种。这种假设的结果通常会导致感知数据之间存在非物理差异,这是由不同的空间尺度导致的,可能使比较容易被过度解释。半变异函数是离散数据中空间变异性的数学表达式。对半变异函数行为建模允许使用克里金法对随机过程场进行空间最优线性预测。克里金法可以提取与特定尺度有关的空间信息(方差),进而将逐点数据转换为具有量化不确定性的网格空间,从而可以进行网格到网格的比较。在这里,我们使用理论和现实世界的实验证明,这种经典的地质统计学方法可以很好地适用于解决评估模型预测或卫星衍生的大气痕量气体的问题。这项研究表明,卫星验证程序必须考虑克里金方差和卫星空间响应函数。我们介绍了臭氧监测仪 (OMI) 对流层 NO 的比较 这反过来将逐点数据转换为具有量化不确定性的网格空间,以便可以进行网格到网格的比较。在这里,我们使用理论和现实世界的实验证明,这种经典的地质统计学方法可以很好地适用于解决评估模型预测或卫星衍生的大气痕量气体的问题。这项研究表明,卫星验证程序必须考虑克里金方差和卫星空间响应函数。我们介绍了臭氧监测仪 (OMI) 对流层 NO 的比较 这反过来将逐点数据转换为具有量化不确定性的网格空间,以便可以进行网格到网格的比较。在这里,我们使用理论和现实世界的实验证明,这种经典的地质统计学方法可以很好地适用于解决评估模型预测或卫星衍生的大气痕量气体的问题。这项研究表明,卫星验证程序必须考虑克里金方差和卫星空间响应函数。我们介绍了臭氧监测仪 (OMI) 对流层 NO 的比较 这项研究表明,卫星验证程序必须考虑克里金方差和卫星空间响应函数。我们介绍了臭氧监测仪 (OMI) 对流层 NO 的比较 这项研究表明,卫星验证程序必须考虑克里金方差和卫星空间响应函数。我们介绍了臭氧监测仪 (OMI) 对流层 NO 的比较在休斯顿 DISCOVER-AQ 活动期间,针对 11 个潘多拉光谱仪 (PSI) 系统的2列。对配对数据的最小二乘拟合显示出低斜率(OMI=0.76×PSI+1.18×10 15分子 cm -2,r 2 =0.67),这表明 OMI 存在不同的偏差。这种由空间尺度问题引起的感知斜率在卷积克里金 PSI 和 OMI (0.96×PSI+0.66×10 15分子 cm -2 , r 2=0.72) 说明 OMI 可能在该区域具有恒定的系统偏差。为了避免在网格数据与逐点测量之间进行比较时出现严重错误,我们认为应该考虑半变异函数(或空间自相关)的概念,特别是如果该领域在卫星尺度上表现出强烈的空间异质性和/或模型足迹。
更新日期:2021-09-24
down
wechat
bug