当前位置: X-MOL 学术Case Stud. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bio-convective thermal melting applications of viscoelastic nanoparticles due to moving wedge
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2021-09-24 , DOI: 10.1016/j.csite.2021.101493
M. Ijaz Khan , Faris Alzahrani

The research communicates the melting applications of viscoelastic nanoparticles with microorganisms due to wedge-shaped configuration. The important features of activation energy, thermophoresis diffusion characteristics and Brownian motion are also highlighted. The analysis is performed in view of Melting process. The flow process is represented mathematically using partial differential equations. For the optimization technique using MATLAB computer-based tools, the Labotto IIIa formulation has utilized. In the velocity equation, the temperature profile, concentration profile and microorganisms' profile, the reporting of the main parameters are fully defined and discussed through figures. The speed can be enhanced by means of a mixed convection appearance is determined. Furthermore, nanoparticles are decreasing in temperature and concentration profiles and the high number of Peclet decreases the profile of microorganisms. This article's research includes a wide range of applications in nanotechnology, electrical and biomedical, biotechnology, medication delivery, chemotherapy, food processing, and other sectors. The claimed results reflect that increasing change in velocity is associated to the higher values of second grade fluid parameter and Marangoni ratio constant. The increase in wedge constant enhanced the velocity. Moreover, the concentration profile and microorganism field reduces with increasing Marangoni ratio constant.



中文翻译:

由于移动楔子的粘弹性纳米粒子的生物对流热熔融应用

由于楔形结构,该研究将粘弹性纳米颗粒与微生物的熔化应用进行了交流。还突出了活化能、热泳扩散特性和布朗运动的重要特征。分析是针对熔炼工艺进行的。流动过程使用偏微分方程在数学上表示。对于使用基于 MATLAB 计算机工具的优化技术,Labotto IIIa 公式已被利用。在速度方程、温度曲线、浓度曲线和微生物曲线中,主要参数的报告通过数字进行了充分的定义和讨论。可以通过混合对流外观来提高速度。此外,纳米粒子的温度和浓度曲线正在降低,而大量的 Peclet 会降低微生物的曲线。本文的研究包括纳米技术、电气和生物医学、生物技术、药物输送、化学疗法、食品加工和其他领域的广泛应用。声称的结果反映了速度的增加变化与二级流体参数和马兰戈尼比率常数的较高值有关。楔形常数的增加提高了速度。此外,浓度分布和微生物场随着 Marangoni 比率常数的增加而减少。生物技术、药物输送、化学疗法、食品加工和其他领域。声称的结果反映了速度的增加变化与二级流体参数和马兰戈尼比率常数的较高值有关。楔形常数的增加提高了速度。此外,浓度分布和微生物场随着 Marangoni 比率常数的增加而减少。生物技术、药物输送、化学疗法、食品加工和其他领域。声称的结果反映了速度的增加变化与二级流体参数和马兰戈尼比率常数的较高值有关。楔形常数的增加提高了速度。此外,浓度分布和微生物场随着 Marangoni 比率常数的增加而减少。

更新日期:2021-09-24
down
wechat
bug