当前位置: X-MOL 学术Phys. Rev. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancement of the spin-glass transition temperature throughpd-orbital hybridization inZn1−xMnxTe
Physical Review B ( IF 3.7 ) Pub Date : 2021-09-22 , DOI: 10.1103/physrevb.104.104423
A. R. Alcantara 1 , S. Barrett 1 , D. Matev 1 , I. Miotkowski 2 , A. K. Ramdas 2 , T. M. Pekarek 1 , J. T. Haraldsen 1
Affiliation  

To gain insight into the spin-glass state of diluted magnetic semiconductors, we have examined the magnetic and electronic properties of Zn1xMnxTe using density-functional theory as well as performed magnetization measurements on the x=0.43 and 0.55 systems to demonstrate a clear spin-glass transition consistent with previous literature. Using a generalized gradient approximation, we investigate the electronic and magnetic properties for x=0, 0.075, 0.15, 0.25, and 0.50 doping levels using the magnetic moment of Mn2+ as guide for the dependence of the Hubbard onsite potential on the electronic structure. Simulations on both ferromagnetic (FM) and antiferromagnetic (AFM) configurations yield a distinct AFM ground-state preference, which is consistent with a zero-magnetic-moment spin-glass state. Here an onsite potential of up to 8 eV on the Mn 3d orbitals is needed to harden the magnetic moment toward S=5/2. From our analysis of the electronic structure evolution with doping and onsite potential, we confirm the semiconducting state of the Mn-doped ZnTe as well as show that the presence of Mn incorporated into the ZnTe matrix at the Zn lattice site produces magnetic interactions through the Te ions with a distinct Te-Mn pd-orbital hybridization. Furthermore, we show that this hybridization is activated with the Mn doping above 0.25 concentration, which corresponds to the doping level in which the spin-glass transition begins to rise. Therefore, it is likely that the coupling of pd-orbital hybridization of the Mn and Te p orbitals is a precursor to the enhancement of the spin-glass transition temperature.

中文翻译:

通过 Zn1−xMnxTe 中的 pd-轨道杂化提高自旋玻璃化转变温度

为了深入了解稀磁半导体的自旋玻璃态,我们研究了 1-XX 使用密度泛函理论以及对磁化强度进行测量 X=0.43和 0.55 系统,以证明与以前的文献一致的清晰的自旋玻璃化转变。使用广义梯度近似,我们研究了电子和磁性X=0, 0.075, 0.15, 0.25, 和 0.50 掺杂水平使用磁矩 2+作为哈伯德现场电位对电子结构依赖性的指南。对铁磁 (FM) 和反铁磁 (AFM) 配置的模拟产生了明显的 AFM 基态偏好,这与零磁矩自旋玻璃态一致。这里 Mn 上的现场电位高达 8 eV3d 需要轨道来硬化磁矩 =5/2. 根据我们对掺杂和现场电位的电子结构演变的分析,我们确认了 Mn 掺杂的 ZnTe 的半导体状态,并表明在 Zn 晶格位点处掺入 ZnTe 基质中的 Mn 的存在通过 Te 产生磁相互作用具有独特 Te-Mn 的离子d-轨道杂交。此外,我们表明这种杂化在 Mn 掺杂浓度高于 0.25 时被激活,这对应于自旋玻璃化转变开始上升的掺杂水平。因此,很可能是耦合d-Mn 和 Te 的轨道杂化 轨道是提高自旋玻璃化转变温度的前兆。
更新日期:2021-09-22
down
wechat
bug