当前位置: X-MOL 学术Environ. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Individual Microcystis colonies harbour distinct bacterial communities that differ by Microcystis oligotype and with time
Environmental Microbiology ( IF 4.3 ) Pub Date : 2021-09-22 , DOI: 10.1111/1462-2920.15772
Derek J. Smith , James Y. Tan , McKenzie A. Powers , Xiaoxia N. Lin , Timothy W. Davis , Gregory J. Dick

After the acceptance of our manuscript, we became aware of an error in our approach used to analyze the bacterial community associated with Microcystis. We only removed DNA sequence reads from Microcystis after the calculation of relative abundance rather than before. In turn, Microcystis abundance may have introduced errors into results on community composition in the ordination and hierarchical clustering.

To assess this, we re-computed the hierarchical clustering and ordination analysis using relative abundance values for the microbiome calculated after Microcystis read removal. The results of the analysis with single Microcystis colonies alone do not change substantially. The correlations with community dissimilarity and sampling date and Microcystis oligotype are still significant and ANOSIM R values increased from 0.41 to 0.43 (for sampling date) and 0.49 to 0.53 (for Microcystis oligotype), respectively (p = 1x10-4 in both cases; figure 1, correction of previous figure 5). Hierarchical clustering assignments changed for 2 of the 44 colonies sequenced (colonies MC2019-108 and MC2019-126). The clusters that now contain these colonies correspond better with the sampling date and Microcystis oligotype of the other member colonies. Temporal trends in the relative abundance of key phycosphere taxa as well as their specificity to certain Microcystis oligotypes were not impacted by the analysis error (figure 2, correction of previous figure 4). The relative abundances reported in original Figure 2 (depicted as percent of total community on single colonies, including Microcystis) remain unaltered to show the contribution of non-Microcystis bacterial reads to total reads in single colonies.

image
Figure 1
Open in figure viewerPowerPoint
Hierarchical clustering of bacterial communities in the Microcystis phycosphere. Branches in the dendrogram are numbered by hierarchical clustering assignments (shown as numbers in hexagons) based on Bray-Curtis dissimilarity. The shape and color of the points at the leaves of the dendrogram indicate oligotype and sampling date, respectively.
image
Figure 2
Open in figure viewerPowerPoint
Changes in the relative abundance of OTUs that are frequently present or indicators of date or Microcystis oligotype in Microcystis phycosphere communities. Mean relative abundances (excluding Microcystis) in both 105 μm filtered water samples from 2019 (top) and single Microcystis colonies (bottom) are shown. Error bars depict 95 % confidence intervals. The absence of error bars indicates that only one colony of the given oligotype was sampled on that date.

The results of the ordination and hierarchical clustering analysis including bulk samples changed more substantially (Results and Discussion subsection “Microcystis phycosphere communities are dissimilar from bulk community samples” in the original publication). Microbial communities were separated into 6 major hierarchical clustering groups rather than 4 (figure 3, correction of previous figure 3). The membership of the clustering is still significantly correlated with sample type (ANOSIM R = 0.6758, P = 0.001), but the correlation is lower than previously calculated (ANOSIM R = 0.7534, P = 1x10-5). The lower correlation can be explained by the 100 μm retentate communities, which were divided among multiple clusters (clusters A, C, and F) that included single colony and other bulk community sample types in some cases (figure 4, correction of previous figure S11). The clustering of samples within these three clusters is correlated with the relative abundance of Microcystis (Mantel ρ = 0.5037, P = 1x10-4, figure 5), which suggests that non-Microcystis communities in bulk phytoplankton seston heavily dominated by Microcystis can more closely resemble non-Microcystis communities associated with some single Microcystis colonies than described in the original manuscript. However, the clustering of single colony-associated communities together with 100 μm retentate communities was limited to 17 colonies in hierarchical cluster C (figures 3 and 4), and non-Microcystis communities ordinated along NMDS1 are separated along a gradient transitioning from single colonies to bulk community samples (figure 3). When viewed with NMDS2, only 2 single colony communities appear to overlap with 100 μm retentate communities along NMDS1, while 5 single colony communities appear to overlap with 100 μm retentate samples along NMDS1 when viewed with NMDS3 (figure 3). Furthermore, the relative abundance of Microcystis in 100 μm retentate samples that clustered with whole water and < 105 μm samples was not significantly higher than that of 100 μm retentate samples that clustered with single Microcystis colonies (Pairwise Wilcox Test, P > 0.05, figure 5). Therefore, even when the relative abundance of Microcystis in bulk samples is high, differences in bacterial community composition between bulk phytoplankton seston and single Microcystis colonies cannot be explained solely by Microcystis relative abundance in bulk seston, which supports the original conclusion of the manuscript that bacterial communities not associated with the Microcystis phycosphere are a major constituent of bacterial communities in bulk seston.

image
Figure 3
Open in figure viewerPowerPoint
NMDS ordination of non-Microcystis bacterial communities in the Microcystis phycosphere, 100 μm retentate, 105 μm filtered, and whole water communities from western Lake Erie. The plot axes show NMDS scores. Points in the ordination are colored by hierarchical clustering assignment. The point shapes in the ordination reflect sample type.
image
Figure 4
Open in figure viewerPowerPoint
Dendrogram of Bray-Curtis dissimilarity in non-Microcystis bacterial communities in the Microcystis phycosphere, bulk 100 μm retentate samples, and whole water and 105 μm filtered communities from western Lake Erie. Branches are colored by hierarchical clustering assignments. Bold branches indicate 100 μm retentate samples and dashed branches show single colony samples in clusters containing both single colonies and 100 μm retentate samples (n = 17).
image
Figure 5
Open in figure viewerPowerPoint
Box plot of Microcystis relative abundance in samples grouped by hierarchical clustering of non-Microcystis community dissimilarity. Only the clusters that contain 100 μm retentate samples are shown. The data are grouped by sample type within each cluster, which is depicted by the color of the boxplot fill. Black dots represent outliers for each interaction of HC cluster and sample type, while yellow diamonds depict the mean Microcystis relative abundance for the entire cluster calculated across all sample types. Yellow error bars depict the 95% confidence interval on the mean for the entire cluster calculated across all sample types.

Shifts in non-Microcystis communities in whole Lake Erie water are still significantly correlated with month (ANOSIM R remained at ~0.36, P = 1x10-4; figure 6, correction of previous figure S9) and chlorophyll a concentration (Mantel ρ decreased from ~0.40 to ~0.37 while P remained at 1x10-4; figure 7, correction of previous figure S10).

image
Figure 6
Open in figure viewerPowerPoint
NMDS ordination of whole water bacterial communities in western Lake Erie over four years colored by month. Data point shapes indicate the year of sample collection. Microcystis OTUs were not included in the analysis.
image
Figure 7
Open in figure viewerPowerPoint
NMDS ordination of whole water bacterial communities in western Lake Erie over four years colored by the natural log of chlorophyll a concentration. Data point shapes indicate the year of sample collection. Microcystis OTUs were not included in the analysis.

The updated results do not substantially change the implications or interpretation of the study, and the updated analysis is included in the GitHub site (https://github.com/Geo-omics/Characterizing-individual-Microcystis-colony-phycosphere-communities) in addition to the originally submitted analysis. We sincerely apologize for any inconvenience that this oversight has caused readers.



中文翻译:

单个微囊藻菌落具有不同的细菌群落,这些细菌群落因微囊藻寡型和时间而异

在我们的手稿被接受后,我们意识到我们用于分析与微囊藻相关的细菌群落的方法存在错误。我们只是在计算相对丰度之后而不是之前从微囊藻中删除了 DNA 序列读数。反过来,微囊藻丰度可能会在排序和层次聚类中对群落组成的结果引入错误。

为了评估这一点,我们使用微囊藻读取删除后计算的微生物组的相对丰度值重新计算层次聚类和排序分析。单独使用单个微囊藻菌落的分析结果没有显着变化。与群落差异和采样日期和微囊藻寡型的相关性仍然显着,ANOSIM R 值分别从 0.41 增加到 0.43(采样日期)和 0.49 增加到 0.53(微囊藻寡型)(p = 1x10 -4在这两种情况下;图 1,对之前图 5 的修正)。已测序的 44 个菌落中的 2 个(菌落 MC2019-108 和 MC2019-126)的分级聚类分配发生了变化。现在包含这些菌落的集群与其他成员菌落的采样日期和微囊藻寡型更好地对应。关键藻类群相对丰度的时间趋势以及它们对某些微囊藻寡型的特异性不受分析误差的影响(图 2,对之前图 4 的更正)。原始图 2 中报告的相对丰度(描绘为单个菌落上总群落的百分比,包括微囊藻)保持不变,以显示非微囊藻的贡献 单个菌落中的细菌读数到总读数。

图片
图1
在图形查看器中打开微软幻灯片软件
微囊藻藻类群落中细菌群落的分层聚类。树状图中的分支通过基于 Bray-Curtis 相异性的分层聚类分配(显示为六边形中的数字)进行编号。树状图叶子点的形状和颜色分别表示寡核苷酸型和采样日期。
图片
图2
在图形查看器中打开微软幻灯片软件
微囊藻类群落中经常出现的 OTU 相对丰度的变化或日期或微囊藻寡型的指标。显示了来自 2019 年的 105 μm 过滤水样品(顶部)和单个微囊藻菌落(底部)的平均相对丰度(不包括微囊藻)。误差条描绘了 95% 的置信区间。没有误差条表明在该日期仅对给定寡型的一个菌落进行了采样。

包含大量样本的排序和层次聚类分析的结果发生了更大的变化(原始出版物中的结果和讨论小节“微囊藻藻类群落与大量群落样本不同”)。微生物群落被分成 6 个主要的层次聚类组,而不是 4 个(图 3,对之前图 3 的更正)。聚类的成员仍然与样本类型显着相关(ANOSIM R = 0.6758,P = 0.001),但相关性低于先前计算的(ANOSIM R = 0.7534,P = 1x10 -5)。较低的相关性可以通过 100 μm 滞留物群落来解释,这些群落被分成多个集群(集群 A、C 和 F),在某些情况下包括单菌落和其他大量群落样本类型(图 4,更正之前的图 S11 )。样品的这三个簇内的群集与相对丰度相关的微囊(曼特尔ρ= 0.5037,P = 1×10 -4,图5),这表明非微囊社区散装浮游植物浮游物很大程度上受支配微囊能更紧密地类似于与某些单一微囊藻相关的非微囊藻群落殖民地比原始手稿中描述的要多。然而,单个菌落相关群落与 100 μm 滞留群落的聚类仅限于分层聚类 C 中的 17 个菌落(图 3 和 4),并且沿 NMDS1 排列的非微囊藻群落沿从单个菌落到大宗社区样本(图 3)。当用 NMDS2 观察时,只有 2 个单菌落群落似乎与 NMDS1 沿线的 100 μm 滞留物群落重叠,而当使用 NMDS3 观察时,5 个单菌落群落似乎与 NMDS1 沿线的 100 μm 滞留物样本重叠(图 3)。此外,微囊藻的相对丰度在与全水和 < 105 μm 样品聚集的 100 μm 滞留物样品中,与与单个微囊藻菌落聚集的 100 μm 滞留物样品相比没有显着升高(Pairwise Wilcox Test,P > 0.05,图 5)。因此,即使散装样品中微囊藻的相对丰度很高,散装浮游植物群落和单个微囊藻群落之间细菌群落组成的差异也不能仅仅用散装群落中微囊藻的相对丰度来解释,这支持了手稿的原始结论,即细菌与微囊藻无关的社区 藻圈是大块沉积物中细菌群落的主要组成部分。

图片
图 3
在图形查看器中打开微软幻灯片软件
NMDS 对微囊藻类藻类、100 μm 截留物、105 μm 过滤物和伊利湖西部的整个水群落中非微囊藻属细菌群落的排序。绘图轴显示 NMDS 分数。排序中的点通过层次聚类分配着色。排序中的点形状反映了样本类型。
图片
图 4
在图形查看器中打开微软幻灯片软件
微囊藻类群中非微囊藻属细菌群落的 Bray-Curtis 不相似性树状图、大量 100 μm 截留物样品以及来自伊利湖西部的全水和 105 μm 过滤群落。分支按层次聚类分配着色。粗体分支表示 100 μm 保留样品,虚线分支显示包含单个菌落和 100 μm 保留样品(n = 17)的簇中的单个菌落样本。
图片
图 5
在图形查看器中打开微软幻灯片软件
按非微囊藻群落差异的层次聚类分组的样本中微囊藻相对丰度的箱线图。仅显示包含 100 μm 保留样品的簇。数据按每个集群内的样本类型分组,由箱线图填充的颜色表示。黑点代表 HC 簇和样本类型的每个相互作用的异常值,而黄色菱形描绘了在所有样本类型中计算的整个簇的平均微囊藻相对丰度。黄色误差条描绘了跨所有样本类型计算的整个集群平均值的 95% 置信区间。

在非转移微囊在整个伊利湖水社区仍然显著与月相关(ANOSIMř保持在〜0.36,P = 1×10 -4 ;图6中,上图S9的校正)和叶绿素一个浓度(曼特尔ρ从降低〜 0.40 到 ~0.37,而P保持在 1x10 -4;图 7,对之前图 S10 的修正)。

图片
图 6
在图形查看器中打开微软幻灯片软件
四年来伊利湖西部全水细菌群落的 NMDS 排序,按月着色。数据点形状表示样本收集的年份。分析中不包括微囊藻OTU。
图片
图 7
在图形查看器中打开微软幻灯片软件
四年来伊利湖西部全水细菌群落的 NMDS 排序,由叶绿素a浓度的自然对数着色。数据点形状表示样本收集的年份。分析中不包括微囊藻OTU。

更新的结果不会实质性地改变研究的含义或解释,更新的分析包含在 GitHub 站点 (https://github.com/Geo-omics/Characterizing-individual-Microcystis-colony-phycosphere-communities)除了最初提交的分析。对于此疏忽给读者带来的任何不便,我们深表歉意。

更新日期:2021-09-22
down
wechat
bug