当前位置: X-MOL 学术Russ. Electr. Engin. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling of Thermal Processes in “Package-on-Package” Type Multichip Microcircuits
Russian Electrical Engineering Pub Date : 2021-09-21 , DOI: 10.3103/s106837122107004x
M. A. Belyaev 1 , V. V. Putrolainen 1 , P. N. Seredov 1 , P. V. Lunkov 1
Affiliation  

Abstract

We present the results of modeling the temperature distribution in a “Package-on-Package” type microcircuit. The microcircuit will be used as a distributed system controller to collect and to multiparametrically analyze the information. The microcircuit case consists of two vertically connected substrates with the memory and the processor dies. On the basis of an analysis of the microcircuit design, we show the thermal peculiarities of its operation mode governed by the “processor–main heat source–location and installation” method. To determine the die temperatures during the stationary operation mode, we created a three-dimensional numerical model consisting of the microcircuit case, the system printed circuit board, and the upper radiator. We propose model simplifications by means of using the efficient values ​​of the thermal conductivity coefficients. The key parameters of the model most strongly affecting the temperature of the dies are the levels of copper filling in the system printed circuit board and in the lower microcircuit substrate, as well as the number of the transient holes in the processor mounting area. We investigate the die temperature dependences on these parameters in the stationary mode under a total heat release of 7.8 W and reveal the optimal parameter values ​​making it possible to significantly reduce the die temperature. The results obtained may be useful in development of multichip microcircuits with vertical chip integration.



中文翻译:

“封装上封装”型多芯片微电路中的热过程建模

摘要

我们展示了对“封装上封装”型微电路中的温度分布进行建模的结果。微电路将用作分布式系统控制器来收集和多参数分析信息。微电路外壳由两个垂直连接的基板与存储器和处理器芯片组成。在分析微电路设计的基础上,我们展示了由“处理器-主热源-位置和安装”方法控制的其运行模式的热特性。为了确定静止操作模式下的芯片温度,我们创建了一个由微电路外壳、系统印刷电路板和上部散热器组成的三维数值模型。我们通过使用导热系数的有效值来提出模型简化。模型中对芯片温度影响最大的关键参数是系统印刷电路板和下部微电路基板中的铜填充水平,以及处理器安装区域中瞬态孔的数量。我们在 7.8 W 的总热量释放下研究了在稳态模式下模具温度对这些参数的依赖性,并揭示了可以显着降低模具温度的最佳参数值。获得的结果可能有助于开发具有垂直芯片集成的多芯片微电路。模型中对芯片温度影响最大的关键参数是系统印刷电路板和下部微电路基板中的铜填充水平,以及处理器安装区域中瞬态孔的数量。我们在 7.8 W 的总热量释放下研究了在稳态模式下模具温度对这些参数的依赖性,并揭示了可以显着降低模具温度的最佳参数值。获得的结果可能有助于开发具有垂直芯片集成的多芯片微电路。模型中对芯片温度影响最大的关键参数是系统印刷电路板和下部微电路基板中的铜填充水平,以及处理器安装区域中瞬态孔的数量。我们在 7.8 W 的总热量释放下研究了在稳态模式下模具温度对这些参数的依赖性,并揭示了可以显着降低模具温度的最佳参数值。获得的结果可能有助于开发具有垂直芯片集成的多芯片微电路。我们在 7.8 W 的总热量释放下研究了在稳态模式下模具温度对这些参数的依赖性,并揭示了可以显着降低模具温度的最佳参数值。获得的结果可能有助于开发具有垂直芯片集成的多芯片微电路。我们在 7.8 W 的总热量释放下研究了在稳态模式下模具温度对这些参数的依赖性,并揭示了可以显着降低模具温度的最佳参数值。获得的结果可能有助于开发具有垂直芯片集成的多芯片微电路。

更新日期:2021-09-21
down
wechat
bug