当前位置: X-MOL 学术J. Energy Storage › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Model validation of a high-speed flywheel energy storage system using power hardware-in-the-loop testing
Journal of Energy Storage ( IF 8.9 ) Pub Date : 2021-09-21 , DOI: 10.1016/j.est.2021.103177
Shahab Karrari 1 , Giovanni De Carne 1 , Mathias Noe 1
Affiliation  

Low-inertia power systems with a high share of renewables can suffer from fast frequency deviations during disturbances. Fast-reacting energy storage systems such as a Flywheel Energy Storage System (FESS) can help limit the frequency deviations by injecting or absorbing high amounts of active power, with almost no degradation concerns. But for an accurate evaluation of the benefits of using a FESS in power systems, an accurate and validated model is necessary, which not only reflects its advantages, but also shows the practical limitations of this technology, such as its losses, its auxiliary power requirements, and its limitations during the whole operational range. In this paper, an accurate model for a high-speed FESS is presented, and then experimentally validated by means of Power Hardware-in-the-Loop (PHIL) testing of a full-scale commercial high-speed FESS in several frequency deviation scenarios. The PHIL testing setup allows testing the FESS during extreme and realistic frequency deviation, including the major frequency disturbance of August 9, 2019, in the power system of the UK. In each scenario, the same inputs that are sent to the real FESS are also given to the FESS model, running in real time, for model validation, and an excellent match between the results of the real FESS and its model is observed. Moreover, the PHIL testing results demonstrate the quick response of the FESS, following a frequency deviation, and its compliance with the latest grid code requirements in Germany for frequency support.



中文翻译:

使用电力硬件在环测试的高速飞轮储能系统模型验证

具有高比例可再生能源的低惯性电力系统在干扰期间可能会受到快速频率偏差的影响。飞轮储能系统 (FESS) 等快速反应储能系统可以通过注入或吸收大量有功功率来帮助限制频率偏差,而几乎没有退化问题。但是为了准确评估在电力系统中使用 FESS 的好处,需要一个准确且经过验证的模型,这不仅反映了它的优势,而且显示了该技术的实际局限性,例如其损耗、辅助电源要求,以及它在整个操作范围内的局限性。在本文中,提出了一种高速 FESS 的精确模型,然后通过功率硬件在环 (PHIL) 测试在几种频率偏差情况下对全尺寸商用高速 FESS 进行实验验证。PHIL 测试设置允许在极端和现实的频率偏差期间测试 FESS,包括英国电力系统中 2019 年 8 月 9 日的主要频率扰动。在每个场景中,发送到真实 FESS 的相同输入也被提供给 FESS 模型,实时运行,用于模型验证,并观察到真实 FESS 的结果与其模型之间的极好匹配。此外,PHIL 测试结果证明了 FESS 在频率偏差后的快速响应,并且符合德国最新的电网规范对频率支持的要求。PHIL 测试设置允许在极端和现实的频率偏差期间测试 FESS,包括英国电力系统中 2019 年 8 月 9 日的主要频率扰动。在每个场景中,发送到真实 FESS 的相同输入也被提供给 FESS 模型,实时运行,用于模型验证,并观察到真实 FESS 的结果与其模型之间的极好匹配。此外,PHIL 测试结果证明了 FESS 在频率偏差后的快速响应,并且符合德国最新的电网规范对频率支持的要求。PHIL 测试设置允许在极端和现实的频率偏差期间测试 FESS,包括英国电力系统中 2019 年 8 月 9 日的主要频率扰动。在每个场景中,发送到真实 FESS 的相同输入也被提供给 FESS 模型,实时运行,用于模型验证,并观察到真实 FESS 的结果与其模型之间的极好匹配。此外,PHIL 测试结果证明了 FESS 在频率偏差后的快速响应,并且符合德国最新的电网规范对频率支持的要求。发送到真实 FESS 的相同输入也提供给 FESS 模型,实时运行,用于模型验证,并观察到真实 FESS 的结果与其模型之间的极好匹配。此外,PHIL 测试结果证明了 FESS 在频率偏差后的快速响应,并且符合德国最新的电网规范对频率支持的要求。发送到真实 FESS 的相同输入也提供给 FESS 模型,实时运行,用于模型验证,并观察到真实 FESS 的结果与其模型之间的极好匹配。此外,PHIL 测试结果证明了 FESS 在频率偏差后的快速响应,并且符合德国最新的电网规范对频率支持的要求。

更新日期:2021-09-21
down
wechat
bug