当前位置: X-MOL 学术J. Fluid Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Scaling properties of the Ffowcs-Williams and Hawkings equation for complex acoustic source close to a free surface
Journal of Fluid Mechanics ( IF 3.6 ) Pub Date : 2021-09-21 , DOI: 10.1017/jfm.2021.723
M. Cianferra 1 , V. Armenio 2
Affiliation  

We perform a scaling analysis of the terms composing the Ffowcs-Williams and Hawkings (FWH) equation, which rules the propagation of noise generated by a rigid body in motion. Our analysis extends the seminal work of Lighthill (Proc. R. Soc. Lond. A, vol. 211, 1952, pp. 564–587) and the dimensional analysis of classical sources (monopole, dipole and quadrupole) considering all the FWH integral terms. Scaling properties are analysed in light of perfect/imperfect similarity when laboratory-scale data are used for full-scale predictions. As a test case we consider a hydrodynamic example, namely a laboratory-scale ship propeller. The data, obtained numerically in a previous study, were post-processed according to the scaling analysis presented herein. We properly scale the speed of sound to obtain perfect similarity and quantify the error with respect to the imperfect scaling. Imperfect similarity introduces errors in the acoustic response related both to the linear terms and to the nonlinear terms, the latter of great importance when the wake is characterized by robust and organized vorticity. Successively, we analyse the effect of a free surface, often present in hydrodynamic applications. We apply the method of images to the FWH equation. The free surface may generate a frequency-dependent constructive/destructive interference. The analysis of an archetypal acoustic field (monopole) provides robust explanation of these interference effects. Finally, we find that imperfect similarity and the absence of a free surface may introduce errors when model-scale data are used to obtain the full-scale acoustic pressure. The error is small for microphones placed in the near field and becomes relevant in the far field because of the nonlinear terms.

中文翻译:

Ffowcs-Williams 和 Hawkings 方程对接近自由表面的复杂声源的标度特性

我们对构成 Ffowcs-Williams 和霍金斯 (FWH) 方程的项进行了比例分析,该方程规定了运动中刚体产生的噪声的传播。我们的分析扩展了 Lighthill 的开创性工作(过程。R. Soc。伦敦。A,卷。211, 1952, pp. 564–587)和考虑所有 FWH 积分项的经典源(单极、偶极和四极)的维数分析。当使用实验室规模的数据进行全面预测时,根据完美/不完美的相似性分析缩放特性。作为测试案例,我们考虑一个流体动力学示例,即实验室规模的船舶螺旋桨。在先前的研究中以数值方式获得的数据,根据本文提出的比例分析进行了后处理。我们适当地缩放声速以获得完美的相似性,并量化关于不完美缩放的误差。不完全相似性会在与线性项和非线性项相关的声学响应中引入误差,当尾流以稳健和有组织的涡度为特征时,后者非常重要。随后,我们分析了自由表面的影响,通常存在于流体动力学应用中。我们将图像方法应用于 FWH 方程。自由表面可以产生依赖于频率的相长/相消干涉。原型声场(单极)的分析为这些干扰效应提供了有力的解释。最后,我们发现,当使用模型尺度数据获得全尺度声压时,不完美的相似性和自由表面的缺失可能会引入错误。对于放置在近场的麦克风,该误差很小,并且由于非线性项而在远场变得相关。自由表面可以产生依赖于频率的相长/相消干涉。原型声场(单极)的分析为这些干扰效应提供了有力的解释。最后,我们发现,当使用模型尺度数据获得全尺度声压时,不完美的相似性和自由表面的缺失可能会引入错误。对于放置在近场的麦克风,该误差很小,并且由于非线性项而在远场变得相关。自由表面可以产生依赖于频率的相长/相消干涉。原型声场(单极)的分析为这些干扰效应提供了有力的解释。最后,我们发现,当使用模型尺度数据获得全尺度声压时,不完美的相似性和自由表面的缺失可能会引入错误。对于放置在近场的麦克风,该误差很小,并且由于非线性项而在远场变得相关。
更新日期:2021-09-21
down
wechat
bug