当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tailoring Porous Transition Metal Oxide for High-Performance Lithium Storage
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2021-09-21 , DOI: 10.1021/acs.jpcc.1c05732
Baoyu Sun 1 , Wei Zheng 1 , Xucai Yin 1 , Xin Chen 1 , Fanpeng Kong 1 , Shuaifeng Lou 1 , Chunyu Du 1 , Pengjian Zuo 1 , Jingying Xie 1, 2 , Jiajun Wang , Geping Yin 1
Affiliation  

High-capacity conversion-type anodes suffer from sluggish ion/electron migration and tremendous mechanical degradations, severely restricting the cyclic performance in LIBs. The mentioned disadvantages can be efficiently eliminated by the development of electrode materials with gradient structure, decreased ion diffusion pathway, and enough reserve space. Herein, a new type 3D-interconnected hollow structure assembled by porous Co3O4 nanoparticles (HG-Co3O4@void) is proposed and fabricated as lithium-ion storage. HG-Co3O4@void exhibits high reversible capacity, superior rate performance, and long-term cycle stability (619 mAh g–1 after 500 cycles at 5 A g–1). The superior performance is attributed to the synergistic effects between large void space and massive ion channels, both which offer robust structure integrity and ultrafast Li+ transport inside HG-Co3O4@void. Besides, the prominent pseudocapacitive behavior induced by three-dimensional accessibility nanoarchitecture led to the ultrahigh rate capability. This work provides a promising way to structure functional materials for electrochemical energy storage technologies.

中文翻译:

为高性能锂存储定制多孔过渡金属氧化物

高容量转换型负极受到离子/电子迁移缓慢和机械退化的影响,严重限制了 LIB 的循环性能。上述缺点可以通过开发具有梯度结构、减少离子扩散路径和足够预留空间的电极材料来有效消除。在此,提出了一种由多孔 Co 3 O 4纳米粒子(HG-Co 3 O 4 @void)组装的新型 3D 互连中空结构,并将其制造为锂离子存储装置。HG-Co 3 O 4 @void 具有高可逆容量、优异的倍率性能和长期循环稳定性(5 A g 500 次循环后619 mAh g –1–1 )。优异的性能归因于大空隙空间和大量离子通道之间的协同效应,两者都提供了强大的结构完整性和HG-Co 3 O 4 @void内的超快 Li +传输。此外,由三维可访问性纳米结构引起的显着赝电容行为导致了超高倍率能力。这项工作为构建用于电化学储能技术的功能材料提供了一种有前景的方法。
更新日期:2021-10-22
down
wechat
bug