当前位置: X-MOL 学术Shock Vib. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Research on Calculation Method for Maximum Mean Acceleration in Longitudinal Train Collision
Shock and Vibration ( IF 1.2 ) Pub Date : 2021-09-20 , DOI: 10.1155/2021/1560297
Jingke Zhang 1 , Xiaorui Wang 1 , Tao Zhu 1 , Bing Yang 1 , Shoune Xiao 1 , Guangwu Yang 1 , Yanwen Liu 2 , Benhuai Li 2
Affiliation  

A large number of numerical simulations are required to design an energy absorption scheme for train crashworthiness, leading to low design efficiency in the early stage. Based on train collision dynamics theory and the finite element method, a dynamic finite element model of longitudinal train collision is established. According to the model, we studied the acceleration time-history characteristics during the train collision process, obtained the mean-peak ratio coefficient, and determined the calculation formula for the maximum mean acceleration of a longitudinal train collision. Through characteristic analysis of the vehicle acceleration, interface force, and other parameters during a longitudinal train collision, the calculation method of the mean acceleration was improved. The analysis shows that the maximum mean acceleration depends on two stages in the collision process: (1) the coupler action of the head vehicle: the mean-peak ratio coefficient of the head vehicle is 0.7 in this stage, and the mean-peak ratio coefficient of other vehicles is 0.43; (2) the coupler of the collision interface is cut off, and the energy absorption devices of the head vehicle or intermediate vehicle absorb energy; the mean-peak ratio coefficient of the vehicle is 0.93 in this stage. On this basis, a mathematical function is established describing the mean acceleration of the vehicle and the average crushing force of the coupler collapse tube and the energy-absorbing device. The calculation formula is obtained for the maximum mean acceleration of the longitudinal train collision, and the results are compared with the mean acceleration obtained by numerical simulation. The Kruskal–Wallis ANOVA multisample independent nonparametric test was conducted to verify the reliability of the calculation results in the 95% confidence interval. The calculation formula can be used to calculate the maximum mean acceleration in the energy allocation stage of train crashworthiness design to effectively improve the efficiency of train collision energy allocation.

中文翻译:

列车纵向碰撞最大平均加速度计算方法研究

列车耐撞性能量吸收方案设计需要大量数值模拟,导致前期设计效率低。基于列车碰撞动力学理论和有限元方法,建立了列车纵向碰撞动力学有限元模型。根据该模型,研究了列车碰撞过程中的加速度时程特性,得到了平均峰值比系数,确定了列车纵向碰撞最大平均加速度的计算公式。通过对列车纵向碰撞过程中车辆加速度、界面力等参数的特征分析,改进了平均加速度的计算方法。分析表明,最大平均加速度取决于碰撞过程中的两个阶段:(1)头车的耦合作用:该阶段头车的平均峰值比系数为0.7,平均峰值比其他车辆系数为0.43;(2)碰撞界面的车钩被切断,头车或中间车的吸能装置吸能;该阶段车辆的均峰比系数为0.93。在此基础上,建立了描述车辆平均加速度和车钩塌缩管和吸能装置平均破碎力的数学函数。得到列车纵向碰撞最大平均加速度的计算公式,并将结果与​​数值模拟得到的平均加速度进行比较。进行 Kruskal-Wallis ANOVA 多样本独立非参数检验以验证计算结果在 95% 置信区间内的可靠性。该计算公式可用于计算列车耐撞设计能量分配阶段的最大平均加速度,有效提高列车碰撞能量分配效率。
更新日期:2021-09-20
down
wechat
bug