当前位置: X-MOL 学术Math. Probl. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Effective Deep Learning Model for Automated Detection of Myocardial Infarction Based on Ultrashort-Term Heart Rate Variability Analysis
Mathematical Problems in Engineering ( IF 1.430 ) Pub Date : 2021-09-20 , DOI: 10.1155/2021/6455053
Muhammad Bilal Shahnawaz 1 , Hassan Dawood 1
Affiliation  

Myocardial infarction (MI), usually termed as heart attack, is one of the main cardiovascular diseases that occur due to the blockage of coronary arteries. This blockage reduces the blood supply to heart muscles, and a prolonged deficiency of blood supply causes the death of heart muscles leading to a heart attack that may cause death. An electrocardiogram (ECG) is used to diagnose MI as it causes variations like ST-T changes in the recorded ECG. Manual inspection of these variations is a tedious task and also requires expertise as the variations produced by MI are often very short in duration with a low amplitude. Hence, these changes may be misinterpreted, leading to delayed diagnosis and appropriate treatment. Therefore, computer-aided analysis of ECG may help to detect MI automatically. In this study, a robust deep learning model is proposed to detect MI based on heart rate variability (HRV) analysis of ECG signals from a single lead. Ultrashort-term HRV analysis is performed to compute HRV analysis features from time-domain and frequency-domain parameters through power spectral density estimations. Nonlinear HRV parameters are also computed using Poincare Plot, Recurrence Analysis, and Detrended Fluctuation Analysis. A finely tuned customized artificial neural network (ANN) algorithm is applied on 23 HRV features for MI detection and classification. The K-fold validation method is used to avoid any biases in results and reported 99.1% accuracy, 100% sensitivity, 98.1% specificity, and 99.0% F1 for MI detection, whereas 98.85% accuracy, 97.40% sensitivity, 99.05% specificity, and 97.70% F1 score is achieved for classification. Furthermore, the ANN algorithm completed its execution in just 59 seconds that indicates the efficiency of the proposed ANN model. The overall performance in terms of computed evaluation matrices and execution time indicates the robustness and cost-effectiveness of the proposed methodology. Thus, the proposed model can be used for high-performance MI detection, even in wearable devices.

中文翻译:

基于超短期心率变异性分析的心肌梗死自动检测有效深度学习模型

心肌梗塞(MI),通常称为心脏病发作,是由于冠状动脉阻塞而发生的主要心血管疾病之一。这种阻塞会减少心肌的血液供应,长期缺乏血液供应会导致心肌死亡,从而导致心脏病发作,从而导致死亡。心电图 (ECG) 用于诊断 MI,因为它会导致记录的 ECG 中的 ST-T 变化等变化。手动检查这些变化是一项乏味的任务,也需要专业知识,因为 MI 产生的变化通常持续时间很短,幅度很小。因此,这些变化可能会被误解,导致延误诊断和适当治疗。因此,心电图的计算机辅助分析可能有助于自动检测 MI。在这项研究中,提出了一种强大的深度学习模型,以基于对来自单个导联的 ECG 信号的心率变异性 (HRV) 分析来检测 MI。执行超短期 HRV 分析以通过功率谱密度估计从时域和频域参数计算 HRV 分析特征。非线性 HRV 参数也可以使用 Poincare 图、复发分析和去趋势波动分析来计算。微调的定制人工神经网络 (ANN) 算法应用于 23 个 HRV 特征,用于 MI 检测和分类。K 折验证方法用于避免结果中的任何偏差,并报告了 99.1% 的准确度、100% 的灵敏度、98.1% 的特异性和 99.0% 执行超短期 HRV 分析以通过功率谱密度估计从时域和频域参数计算 HRV 分析特征。非线性 HRV 参数也可以使用 Poincare 图、复发分析和去趋势波动分析来计算。微调的定制人工神经网络 (ANN) 算法应用于 23 个 HRV 特征,用于 MI 检测和分类。K 折验证方法用于避免结果中的任何偏差,并报告了 99.1% 的准确度、100% 的灵敏度、98.1% 的特异性和 99.0% 执行超短期 HRV 分析以通过功率谱密度估计从时域和频域参数计算 HRV 分析特征。非线性 HRV 参数也可以使用 Poincare 图、复发分析和去趋势波动分析来计算。微调的定制人工神经网络 (ANN) 算法应用于 23 个 HRV 特征,用于 MI 检测和分类。K 折验证方法用于避免结果中的任何偏差,并报告了 99.1% 的准确度、100% 的灵敏度、98.1% 的特异性和 99.0% 微调的定制人工神经网络 (ANN) 算法应用于 23 个 HRV 特征,用于 MI 检测和分类。K 折验证方法用于避免结果中的任何偏差,并报告了 99.1% 的准确度、100% 的灵敏度、98.1% 的特异性和 99.0% 微调的定制人工神经网络 (ANN) 算法应用于 23 个 HRV 特征,用于 MI 检测和分类。K 折验证方法用于避免结果中的任何偏差,并报告了 99.1% 的准确度、100% 的灵敏度、98.1% 的特异性和 99.0%MI检测的F 1 ,而分类实现了98.85%的准确度、97.40%的灵敏度、99.05%的特异性和97.70%的F 1 分数。此外,ANN 算法仅在 59 秒内完成了其执行,这表明所提出的 ANN 模型的效率。计算评估矩阵和执行时间方面的整体性能表明所提出的方法的稳健性和成本效益。因此,即使在可穿戴设备中,所提出的模型也可用于高性能 MI 检测。
更新日期:2021-09-20
down
wechat
bug