当前位置: X-MOL 学术Energy Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
ZeoPTES: Zeotropic Pumped Thermal Energy Storage with an Ammonia–Water Mixture as Working Fluid
Energy Technology ( IF 3.6 ) Pub Date : 2021-09-19 , DOI: 10.1002/ente.202100470
Aiko Bernehed 1
Affiliation  

The rapid rise of renewable energy production necessitates the development of large-scale electricity storage systems. Pumped thermal energy storage (PTES), where electricity is stored in hot and cold storage units, has recently garnered a lot of interest. Previously proposed PTES systems rely on pure fluids as working fluids in Brayton- or Rankine-based power cycles. Herein, ZeoPTES, a PTES system using a zeotropic mixture of ammonia and water as working fluid, is introduced. The mixture exhibits nonisothermal evaporation and condensation, which allows utilization of industrially available sensible storage units, like water or molten salt, to store the thermal energy from these phase changes. A simulation using the REFPROP 10.0 database is written to analyze the cycle. Eight parameters are identified as having an effect on system round-trip efficiency and 30 000 simulations with random values for these parameters are run to identify the impact of all. Although efficient compressors and expanders are necessary to reach a high power-to-power round-trip efficiency, the largest system-wide losses arise from entropy generation and thermal stream mismatch in the cold and hot side heat exchangers. Using state-of-the-art microchannel heat exchangers with extremely low pinch points allows for round-trip efficiencies in excess of 70%.

中文翻译:

ZeoPTES:以氨水混合物作为工作流体的非均沸泵热能储存

可再生能源生产的快速增长需要开发大规模的电力存储系统。泵送热能存储 (PTES) 将电力存储在冷热存储单元中,最近引起了很多兴趣。先前提出的 PTES 系统依赖纯流体作为基于布雷顿或兰金的动力循环中的工作流体。在此,介绍了一种使用氨和水的共沸混合物作为工作流体的 PTES 系统 ZeoPTES。该混合物表现出非等温蒸发和冷凝,这允许利用工业上可用的敏感存储单元,如水或熔盐,来存储来自这些相变的热能。编写使用 REFPROP 10.0 数据库的模拟来分析循环。八个参数被确定为对系统往返效率有影响,并运行 30 000 次模拟,这些参数具有随机值,以确定所有参数的影响。尽管需要高效的压缩机和膨胀机才能实现高功率到功率的往返效率,但最大的系统范围损失来自冷侧和热侧热交换器中的熵产生和热流不匹配。使用具有极低夹点的最先进的微通道换热器可实现超过 70% 的往返效率。最大的全系统损失来自冷侧和热侧换热器中的熵产生和热流不匹配。使用具有极低夹点的最先进的微通道换热器可实现超过 70% 的往返效率。最大的全系统损失来自冷侧和热侧换热器中的熵产生和热流不匹配。使用具有极低夹点的最先进的微通道换热器可实现超过 70% 的往返效率。
更新日期:2021-11-04
down
wechat
bug