当前位置: X-MOL 学术bioRxiv. Biophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Yeast cells actively tune their membranes to phase separate at temperatures that scale with growth temperatures
bioRxiv - Biophysics Pub Date : 2021-09-16 , DOI: 10.1101/2021.09.14.460156
Chantelle L. Leveille , Caitlin E. Cornell , Alexey J. Merz , Sarah L. Keller

Membranes of vacuoles, the lysosomal organelles in yeast, undergo extraordinary changes during the cell’s normal growth cycle. The cycle begins with a stage of rapid cell growth. Then, as glucose becomes scarce, growth slows, and the vacuole membranes phase-separate into micron-scale liquid domains. Recent studies suggest that these domains are important for yeast survival by laterally organizing membrane proteins that play a key role in a central signaling pathway conserved among eukaryotes (TORC1). An outstanding question in the field has been whether yeast stringently regulate the phase transition and how they respond to new physical conditions. Here, we measure transition temperatures – an increase of roughly 15°C returns vacuole membranes to a state that appears uniform across a range of growth temperatures. We find that broad populations of yeast grown at a single temperature regulate the transition to occur over a surprisingly narrow temperature range. Moreover, the transition temperature scales linearly with the growth temperature, demonstrating that the cells physiologically adapt to maintain proximity to the transition. Next, we ask how yeast adjust their membranes to achieve phase separation. Specifically, we test how levels of ergosterol, the main sterol in yeast, induce or eliminate membrane domains. We isolate vacuoles from yeast during their rapid stage of growth, when their membranes do not natively exhibit domains. We find that membrane domains materialize when ergosterol is depleted, contradicting the assumption that increases in ergosterol cause membrane phase separation in vivo, and in agreement with prior studies that use artificial and cell-derived membranes.

中文翻译:

酵母细胞主动调整它们的膜以在随生长温度成比例的温度下进行相分离

液泡膜,即酵母中的溶酶体细胞器,在细胞的正常生长周期中会发生非凡的变化。该周期开始于细胞快速生长的阶段。然后,随着葡萄糖变得稀缺,生长减慢,液泡膜相分离成微米级液体域。最近的研究表明,这些结构域通过横向组织膜蛋白对酵母存活很重要,膜蛋白在真核生物中保守的中央信号通路 (TORC1) 中起关键作用。该领域的一个突出问题是酵母是否严格调节相变以及它们如何应对新的物理条件。在这里,我们测量转变温度——大约 15°C 的增加会使液泡膜恢复到在一系列生长温度下看起来均匀的状态。我们发现在单一温度下生长的广泛酵母种群调节了在一个令人惊讶的狭窄温度范围内发生的转变。此外,转变温度与生长温度成线性比例,表明细胞在生理上适应保持接近转变。接下来,我们询问酵母如何调整它们的膜以实现相分离。具体来说,我们测试了麦角甾醇(酵母中的主要甾醇)的水平如何诱导或消除膜结构域。我们在酵母的快速生长阶段从酵母中分离出液泡,此时它们的膜本身并不表现出结构域。我们发现当麦角甾醇耗尽时膜结构域会出现,这与麦角甾醇增加导致膜相分离的假设相矛盾 转变温度与生长温度成线性比例,表明细胞在生理上适应以保持接近转变。接下来,我们询问酵母如何调整它们的膜以实现相分离。具体来说,我们测试了麦角甾醇(酵母中的主要甾醇)的水平如何诱导或消除膜结构域。我们在酵母的快速生长阶段从酵母中分离出液泡,此时它们的膜本身并不表现出结构域。我们发现当麦角甾醇耗尽时膜结构域会出现,这与麦角甾醇增加导致膜相分离的假设相矛盾 转变温度与生长温度成线性比例,表明细胞在生理上适应以保持接近转变。接下来,我们询问酵母如何调整它们的膜以实现相分离。具体来说,我们测试了麦角甾醇(酵母中的主要甾醇)的水平如何诱导或消除膜结构域。我们在酵母的快速生长阶段从酵母中分离出液泡,此时它们的膜本身并不表现出结构域。我们发现当麦角甾醇耗尽时膜结构域会出现,这与麦角甾醇增加导致膜相分离的假设相矛盾 我们测试麦角甾醇(酵母中的主要甾醇)的水平如何诱导或消除膜结构域。我们在酵母的快速生长阶段从酵母中分离出液泡,此时它们的膜本身并不表现出结构域。我们发现当麦角甾醇耗尽时膜结构域会出现,这与麦角甾醇增加导致膜相分离的假设相矛盾 我们测试麦角甾醇(酵母中的主要甾醇)的水平如何诱导或消除膜结构域。我们在酵母的快速生长阶段从酵母中分离出液泡,此时它们的膜本身并不表现出结构域。我们发现当麦角甾醇耗尽时膜结构域会出现,这与麦角甾醇增加导致膜相分离的假设相矛盾体内,并与使用人工和细胞衍生膜的先前研究一致。
更新日期:2021-09-19
down
wechat
bug