当前位置: X-MOL 学术J. Phys. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Memorial Viewpoint for Nicholas A. Besley
The Journal of Physical Chemistry A ( IF 2.7 ) Pub Date : 2021-09-17 , DOI: 10.1021/acs.jpca.1c07974
Jonathan D Hirst 1
Affiliation  

It is with great sorrow that we mourn the death of our dear friend and colleague Nicholas “Nick” A. Besley, who died on 27th June 2021, aged 48, following a cycling accident. We have lost a quietly spoken gentleman and an astute scholar, who has been taken from us suddenly at what should have been the midpoint of his career. Nick’s significant and wide-ranging contributions to science began when he was an undergraduate at the University of Sussex, publishing his first paper with Tony McCaffery and co-workers to propose a classical representation of dynamical angular momentum models for rotational transfer in polyatomic molecules. Another early paper during Nick’s time at Sussex focused on prediction of the stability of iron clusters. This was work with Tony Stace and the late Roy Johnston; Tony later became a colleague of Nick’s at the University of Nottingham. After completing his undergraduate studies, Nick stayed on at the University of Sussex to undertake a D. Phil. with Peter Knowles, and during his doctoral period he relocated with Peter to the University of Birmingham. His research focused, among other things, on computing ab initio the potential energy surface of a prototypical reaction of a heavy atom with a heavy-light diatomic: Cl(2P)+ HCl → ClH + Cl(2P). The work was published by Nick and Peter in collaboration with Jonathan Connor (Manchester) and George Schatz (then at the Argonne National Laboratory). In 1997, Nick left the “Venice of the Midlands” for the more agreeable climate of southern California, taking a postdoctoral position at the Scripps Research Institute with Jonathan Hirst. A rigorous training in quantum chemistry served Nick well, as they studied the theory of the electronic circular dichroism (CD) of proteins, which led to the development of what are still today the most accurate calculations of protein CD spectra. This period of Nick’s career ignited his long-standing interest in computational spectroscopy. Deciding to return to the UK in 1999, Nick accepted a postdoctoral position with Peter Gill, who himself had just taken up a chair at the University of Nottingham. With Peter, Nick deepened his knowledge of quantum chemistry, developing the theory of intracules: two-electron functions that are well suited to studying interelectronic interactions and the effects of electron correlation. The study of intracules was the basis for a prestigious 5-year EPSRC Advanced Research Fellowship, which Nick was awarded in 2002. He became a significant contributor to the quantum chemistry software suite, Q-Chem, notably the maximum overlap method for self-consistent field calculations of excited states, which arose from a sabbatical visit with Peter Gill, who had moved to the Australian National University. Around this time, Nick’s research interests diversified yet further. He developed a particularly productive and long-standing collaboration with Nottingham colleague Mike George centered on vibrational spectroscopy. Nick also targeted other techniques including fluorescence, NMR, and X-ray absorption spectroscopy. The latter blossomed into another area of inspiration, where Nick made seminal contributions on the use of density functional theory to calculate the spectroscopy of core electrons. Computational nanoscience also emerged as fertile ground for collaboration with, among others, colleagues Andrei Khlobystov, Richard Wheatley, and Elena (née) Bichoutskaia. Elena and Nick married in 2007. His work in computational nanoscience included the development of an empirical force field for the simulation of the vibrational spectroscopy of carbon nanomaterials. Many colleagues across our School, from gas phase spectroscopists to synthetic chemists, benefitted from interactions with Nick. His interests encompassed van der Waals complexes of nitric oxide, physisorption on surfaces, the X-ray photoelectron spectroscopy of ionic liquids and electron transfer in proteins, to name just a few. Nick renewed his scientific interactions with Tony Stace, studying helium nanodroplets, which developed into a productive collaboration with Andy Ellis at Leicester. Nick’s most recent work has continued to advance several of the aforementioned themes, investigating challenges as diverse as more efficient materials for the storage of carbon dioxide through to using computational spectroscopy to aid in the identification of molecules in outer space. It was a great pleasure to watch Nick flourish at the University of Nottingham as an excellent researcher and a wonderful teacher, who was always willing to help and support students. The Molecular Graphics and Modelling Society recognized Nick’s work with the presentation of its first Silver Jubilee Prize in 2007 and the Leverhulme Trust awarded him a Research Fellowship in 2014. Esteemed by colleagues and undergraduates for his lecturing, Nick was awarded a School of Chemistry Teaching Excellence Award in 2018, the same year that he was promoted to full professor. Nick also contributed fully to the wider research community, much of this under the aegis of the Royal Society of Chemistry, for example, establishing the RSC Theoretical Chemistry Group international conference series. A much loved son, brother, husband, and father, Nick is survived by his wife, Elena, and their daughter, Emily, his parents, Dee and Alan, and his brother, Adam. His students, colleagues and collaborators will remember him as a kind-hearted, gentle soul, with a great scientific curiosity and insight that will endure through the students he mentored and his published work for many years to come. Selected publications of Nicholas A. Besley
1.Besley, N. A.; Johnston, R. L.; Stace, A. J.; Uppenbrink, J. Theoretical study of the structure and stabilities of iron clusters J. Mol. Struct.: THEOCHEM 1995, 341, 75–90. DOI: 10.1016/0166-1280(95)04207-M
2.Dobbyn, A. J.; Connor, J. N. L.; Besley, N. A.; Knowles, P. J.; Schatz, G. C. Coupled ab initio potential energy surfaces for the reaction Cl(2P) + HCl → ClH + Cl(2P). Phys. Chem. Chem. Phys. 1999, 1, 957−966. DOI: 10.1039/a808183b
3.Besley, N. A.; Hirst, J. D. Ab initio study of the effect of solvation on the electronic spectra of formamide and N-methylacetamide. J. Phys. Chem. A 1998, 102, 10791–10797. DOI: 10.1021/jp982645f
4.Besley, N. A.; Hirst, J. D. Theoretical studies toward quantitative protein circular dichroism calculations. J. Am. Chem. Soc. 1999, 121, 9636–9644. DOI: 10.1021/ja990627l
5.Besley, N. A.; Lee, A. M.; Gill, P. M. W. Computation and analysis of molecular Hartree-Fock momentum intracules. Mol. Phys. 2002, 100, 1763–1770. DOI: 10.1080/00268970110111779
6.Colley, C. S.; Grills, D. C.; Besley, N. A.; Jockusch, S.; Matousek, P.; Parker, A. W.; Towrie, M.; Turro, N. J.; Gill, P. M. W.; George, M. W. Probing the reactivity of photoinitiators for free radical polymerization: A time-resolved IR spectroscopic study of benzoyl radicals. J. Am. Chem. Soc. 2002, 124, 14952–14958. DOI: 10.1021/ja026099m
7.Besley, N. A. Theoretical modeling of amide bands in solution. J. Phys. Chem. A 2004, 108, 10794–10800. DOI: 10.1021/jp046073c
8.Besley, N. A.; Noble, A. Time-dependent density functional theory study of the X-ray absorption spectroscopy of acetylene, ethylene and benzene on Si(100). J. Phys. Chem. C 2007, 111, 3333–3400. DOI: 10.1021/jp065160x
9.Gilbert, A. T. B.; Besley, N. A.; Gill, P. M. W. Self-consistent field calculations of excited states using the maximum overlap method, (MOM). J. Phys. Chem. A 2008, 112, 13164–13171. DOI:10.1021/jp801738f
10.Chuvilin, A.; Kaiser, U.; Bichoutskaia, E.; Besley, N. A.; Khlobystov, A. N. On the mechanism of direct transformation of graphene to fullerene. Nat. Chem. 2010, 2, 450–453. DOI: 10.1038/nchem.644
11.Hanson-Heine, M. W. D.; George, M. W.; Besley, N. A. Investigating the calculation of anharmonic vibrational frequencies using force fields derived from density functional theory. J. Phys. Chem. A 2012, 116, 4417–4425. DOI: 10.1021/jp301670f
12.Briggs, E. A.; Besley, N. A.; Robinson, D. QM/MM excited state molecular dynamics and fluorescence spectroscopy of BODIPY. J. Phys. Chem. A 2013, 117, 2644–2650. DOI: 10.1021/jp312229b
13.Do, H.; Besley, N. A. Structure and bonding in ionized water clusters. J. Phys. Chem. A 2013, 117, 5385–5391. DOI: 10.1021/jp405052g
14.Briggs, E. A.; Besley, N. A. A density functional theory based analysis of photoinduced electron transfer in a triazacryptand based K+ sensor. J. Phys. Chem. A 2015, 119, 2902–2907. DOI: 10.1021/acs.jpca.5b01124
15.Fransson, T.; Harada, Y.; Kosugi, N.; Besley, N. A.; Winter, B.; Rehr, J. J.; Pettersson, L. G. M.; Nilsson, A. X-ray and electron spectroscopy of water. Chem. Rev. 2016, 116, 7551–7569. DOI: 10.1021/acs.chemrev.5b00672
16.Sadoon, A.; Sarma, G.; Cunningham, E. M.; Tandy, J.; Hanson-Heine, M. W. D.; Besley, N. A.; Yang, S.; Ellis, A. M. Infrared spectroscopy of NaCl(CH3OH)n complexes in helium nanodroplets. J. Phys. Chem. A 2016, 120, 8085–8092. DOI: 10.1021/acs.jpca.6b06227
17.Fouda, A. E. A.; Seitz, L. C.; Hauschild, D.; Blum, M.; Yang, W.; Heske, C.; Weinhardt, L.; Besley, N. A. Observation of double excitations in the resonant inelastic X-ray scattering of nitric oxide. J. Phys. Chem. Lett. 2020, 11, 7476–7482. DOI: 10.1021/acs.jpclett.0c01981
18.Besley, N. A. Density functional theory calculations of core-electron binding energies at the K-edge of heavier elements. J. Chem. Theory Comput. 2021, 17, 3644–3651. DOI: 10.1021/acs.jctc.1c00171
Besley, N. A.; Johnston, R. L.; Stace, A. J.; Uppenbrink, J. Theoretical study of the structure and stabilities of iron clusters J. Mol. Struct.: THEOCHEM 1995, 341, 75–90. DOI: 10.1016/0166-1280(95)04207-M Dobbyn, A. J.; Connor, J. N. L.; Besley, N. A.; Knowles, P. J.; Schatz, G. C. Coupled ab initio potential energy surfaces for the reaction Cl(2P) + HCl → ClH + Cl(2P). Phys. Chem. Chem. Phys. 1999, 1, 957−966. DOI: 10.1039/a808183b Besley, N. A.; Hirst, J. D. Ab initio study of the effect of solvation on the electronic spectra of formamide and N-methylacetamide. J. Phys. Chem. A 1998, 102, 10791–10797. DOI: 10.1021/jp982645f Besley, N. A.; Hirst, J. D. Theoretical studies toward quantitative protein circular dichroism calculations. J. Am. Chem. Soc. 1999, 121, 9636–9644. DOI: 10.1021/ja990627l Besley, N. A.; Lee, A. M.; Gill, P. M. W. Computation and analysis of molecular Hartree-Fock momentum intracules. Mol. Phys. 2002, 100, 1763–1770. DOI: 10.1080/00268970110111779 Colley, C. S.; Grills, D. C.; Besley, N. A.; Jockusch, S.; Matousek, P.; Parker, A. W.; Towrie, M.; Turro, N. J.; Gill, P. M. W.; George, M. W. Probing the reactivity of photoinitiators for free radical polymerization: A time-resolved IR spectroscopic study of benzoyl radicals. J. Am. Chem. Soc. 2002, 124, 14952–14958. DOI: 10.1021/ja026099m Besley, N. A. Theoretical modeling of amide bands in solution. J. Phys. Chem. A 2004, 108, 10794–10800. DOI: 10.1021/jp046073c Besley, N. A.; Noble, A. Time-dependent density functional theory study of the X-ray absorption spectroscopy of acetylene, ethylene and benzene on Si(100). J. Phys. Chem. C 2007, 111, 3333–3400. DOI: 10.1021/jp065160x Gilbert, A. T. B.; Besley, N. A.; Gill, P. M. W. Self-consistent field calculations of excited states using the maximum overlap method, (MOM). J. Phys. Chem. A 2008, 112, 13164–13171. DOI:10.1021/jp801738f Chuvilin, A.; Kaiser, U.; Bichoutskaia, E.; Besley, N. A.; Khlobystov, A. N. On the mechanism of direct transformation of graphene to fullerene. Nat. Chem. 2010, 2, 450–453. DOI: 10.1038/nchem.644 Hanson-Heine, M. W. D.; George, M. W.; Besley, N. A. Investigating the calculation of anharmonic vibrational frequencies using force fields derived from density functional theory. J. Phys. Chem. A 2012, 116, 4417–4425. DOI: 10.1021/jp301670f Briggs, E. A.; Besley, N. A.; Robinson, D. QM/MM excited state molecular dynamics and fluorescence spectroscopy of BODIPY. J. Phys. Chem. A 2013, 117, 2644–2650. DOI: 10.1021/jp312229b Do, H.; Besley, N. A. Structure and bonding in ionized water clusters. J. Phys. Chem. A 2013, 117, 5385–5391. DOI: 10.1021/jp405052g Briggs, E. A.; Besley, N. A. A density functional theory based analysis of photoinduced electron transfer in a triazacryptand based K+ sensor. J. Phys. Chem. A 2015, 119, 2902–2907. DOI: 10.1021/acs.jpca.5b01124 Fransson, T.; Harada, Y.; Kosugi, N.; Besley, N. A.; Winter, B.; Rehr, J. J.; Pettersson, L. G. M.; Nilsson, A. X-ray and electron spectroscopy of water. Chem. Rev. 2016, 116, 7551–7569. DOI: 10.1021/acs.chemrev.5b00672 Sadoon, A.; Sarma, G.; Cunningham, E. M.; Tandy, J.; Hanson-Heine, M. W. D.; Besley, N. A.; Yang, S.; Ellis, A. M. Infrared spectroscopy of NaCl(CH3OH)n complexes in helium nanodroplets. J. Phys. Chem. A 2016, 120, 8085–8092. DOI: 10.1021/acs.jpca.6b06227 Fouda, A. E. A.; Seitz, L. C.; Hauschild, D.; Blum, M.; Yang, W.; Heske, C.; Weinhardt, L.; Besley, N. A. Observation of double excitations in the resonant inelastic X-ray scattering of nitric oxide. J. Phys. Chem. Lett. 2020, 11, 7476–7482. DOI: 10.1021/acs.jpclett.0c01981 Besley, N. A. Density functional theory calculations of core-electron binding energies at the K-edge of heavier elements. J. Chem. Theory Comput. 2021, 17, 3644–3651. DOI: 10.1021/acs.jctc.1c00171 This article has not yet been cited by other publications.


中文翻译:

Nicholas A. Besley 的纪念观点

我们非常悲痛地哀悼我们亲爱的朋友兼同事 Nicholas “Nick” A. Besley,他于 2021 年 6 月 27 日因自行车事故去世,享年 48 岁。我们失去了一位沉默寡言的绅士和一位精明的学者,他在本应处于职业生涯中期的时候突然被我们带走了。尼克对科学的重大而广泛的贡献始于他在苏塞克斯大学读本科时,他与托尼·麦卡弗里 (Tony McCaffery) 及其同事发表了他的第一篇论文,提出了多原子分子旋转转移的动力学角动量模型的经典表示。尼克在苏塞克斯期间发表的另一篇早期论文侧重于预测铁团簇的稳定性。这是与 Tony Stace 和已故的 Roy Johnston 合作的作品;托尼后来成为尼克在诺丁汉大学的同事。完成本科学习后,尼克继续留在萨塞克斯大学攻读博士学位。与彼得诺尔斯一起,在他的博士期间,他和彼得一起搬到了伯明翰大学。他的研究重点包括计算从头算重原子与重轻双原子反应的势能面:Cl( 2 P)+ HCl → ClH + Cl( 2P)。这项工作由尼克和彼得与乔纳森康纳(曼彻斯特)和乔治沙茨(当时在阿贡国家实验室)合作出版。1997 年,尼克离开“中部威尼斯”,前往加州南部气候宜人的地方,与乔纳森·赫斯特 (Jonathan Hirst) 一起在斯克里普斯研究所 (Scripps Research Institute) 担任博士后职位。严格的量子化学培训对尼克很有帮助,因为他们研究了蛋白质的电子圆二色性 (CD) 理论,这导致了今天仍然是最准确的蛋白质 CD 光谱计算的发展。Nick 的这段职业生涯点燃了他对计算光谱学的长期兴趣。1999 年,Nick 决定返回英国,接受了 Peter Gill 的博士后职位,后者本人刚刚在诺丁汉大学担任教职。与彼得一起,尼克加深了他的量子化学知识,发展了内部理论:非常适合研究电子间相互作用和电子相关效应的双电子函数。细胞内的研究是著名的 5 年 EPSRC 高级研究奖学金的基础,尼克于 2002 年获得该奖学金。他成为量子化学软件套件 Q-Chem 的重要贡献者,特别是自洽的最大重叠方法激发态的场计算,这源于对搬到澳大利亚国立大学的彼得吉尔的休假访问。大约在这个时候,尼克的研究兴趣进一步多样化。他与诺丁汉的同事迈克·乔治 (Mike George) 开展了一项特别富有成效且长期的合作,以振动光谱学为中心。Nick 还针对其他技术,包括荧光、核磁共振和 X 射线吸收光谱。后者发展成为另一个灵感领域,尼克在使用密度泛函理论计算核心电子光谱方面做出了开创性贡献。计算纳米科学也成为与同事 Andrei Khlobystov、Richard Wheatley 和 Elena (née) Bichoutskaia 等人合作的沃土。Elena 和 Nick 于 2007 年结婚。他在计算纳米科学方面的工作包括开发用于模拟碳纳米材料振动光谱的经验力场。我们学院的许多同事,从气相光谱学家到合成化学家,都从与尼克的互动中受益。他的兴趣包括一氧化氮的范德瓦尔斯配合物,表面物理吸附、离子液体的 X 射线光电子能谱和蛋白质中的电子转移,仅举几例。尼克重新与托尼·斯塔斯进行科学互动,研究氦纳米液滴,并与莱斯特的安迪·埃利斯进行了富有成效的合作。尼克最近的工作继续推进上述几个主题,调查了从更有效的二氧化碳储存材料到使用计算光谱学来帮助识别外太空分子等各种挑战。很高兴看到尼克在诺丁汉大学蓬勃发展,成为一名出色的研究人员和一位出色的老师,他总是乐于帮助和支持学生。分子图形和建模协会在 2007 年颁发了首届银禧奖,以表彰尼克的工作,并且 Leverhulme 信托基金在 2014 年授予他研究奖学金。尼克因其演讲而受到同事和本科生的尊重,被授予化学学院卓越教学奖2018年获奖,同年晋升为正教授。Nick 还为更广泛的研究界做出了全面贡献,其中大部分是在皇家化学学会的支持下,例如,建立了 RSC 理论化学组国际会议系列。尼克是一个深受爱戴的儿子、兄弟、丈夫和父亲,他的妻子埃琳娜 (Elena) 和他们的女儿艾米丽 (Emily)、父母迪伊 (Dee) 和艾伦 (Alan) 以及兄弟亚当 (Adam) 幸存下来。他的学生、同事和合作者会记得他是一个善良、Nicholas A. Besley 的出版物选集
1.北卡罗来纳州贝斯利约翰斯顿,RL斯泰斯,AJ上彭布林克,J.铁团簇结构和稳定性的理论研究J. Mol. 结构:THEOCHEM 1995 , 341 , 75-90。DOI:10.1016/0166-1280(95)04207-M
2.多宾,AJ康纳,JNL贝斯利, NA ; 诺尔斯,PJ沙茨,GCCl( 2 P) + HCl → ClH + Cl( 2 P)反应的从头算势能面耦合。物理。化学 化学 物理。 1999 , 1 , 957−966。DOI:10.1039/a808183b
3.贝斯利, NA ; 赫斯特,法学博士溶剂化对甲酰胺和 N-甲基乙酰胺电子光谱影响的从头算研究。J.物理。化学 甲 1998102,10791-10797。DOI:10.1021/jp982645f
4.贝斯利, NA ; 赫斯特,法学博士定量蛋白质圆二色性计算的理论研究。J. 上午。化学 社会。 1999年121,9636-9644。DOI:10.1021/ja990627l
5.贝斯利, NA ; 李,上午吉尔,PMW分子 Hartree-Fock 动量内部的计算和分析。摩尔。物理。 2002 年100 年,1763-1770 年。DOI:10.1080/00268970110111779
6.科利,CS烤架,直流贝斯利, NA ; 乔库什,S马图塞克,P帕克,AW托里,M新泽西州特罗吉尔,PMW乔治,兆瓦探索光引发剂对自由基聚合的反应性:苯甲酰基自由基的时间分辨红外光谱研究。J. 上午。化学 社会。 2002年124,14952-14958。DOI:10.1021/ja026099m
7.北卡罗来纳州贝斯利溶液中酰胺带的理论模型。J.物理。化学 一个 2004年108,10794-10800。DOI:10.1021/jp046073c
8.贝斯利, NA ; 诺贝尔,A.乙炔、乙烯和苯在 Si(100) 上的 X 射线吸收光谱的瞬态密度泛函理论研究。J.物理。化学 C 2007 , 111 , 3333–3400。DOI:10.1021/jp065160x
9.吉尔伯特,ATB贝斯利, NA ; 吉尔,PMW使用最大重叠法 (MOM) 进行激发态的自洽场计算。J.物理。化学 A 2008 , 112 , 13164–13171。DOI:10.1021/jp801738f
10.楚维林,A美国凯撒Bichoutskaia, E. ; 北卡罗来纳州贝斯利赫洛贝斯托夫,安省关于石墨烯直接转化为富勒烯的机理。纳特。化学 2010 , 2 , 450–453。DOI:10.1038/nchem.644
11.汉森海涅,MWD乔治,兆瓦北卡罗来纳州贝斯利使用源自密度泛函理论的力场研究非谐振动频率的计算。J.物理。化学 A 2012 , 116 , 4417–4425。DOI:10.1021/jp301670f
12.布里格斯,EA贝斯利, NA ; 罗宾逊,D.BODIPY 的 QM/MM 激发态分子动力学和荧光光谱。J.物理。化学 甲 2013117,2644至2650年。DOI:10.1021/jp312229b
13.做,H北卡罗来纳州贝斯利离子水簇中的结构和键合。J.物理。化学 A 2013 , 117 , 5385–5391。DOI:10.1021/jp405052g
14.布里格斯,EA北卡罗来纳州贝斯利基于密度泛函理论的基于三氮杂密基的 K +传感器中光致电子转移的分析。J.物理。化学 一个 2015年119,2902年至2907年。DOI:10.1021/acs.jpca.5b01124
15.弗兰森,T原田,Y小杉,N贝斯利, NA ; 冬天,B雷尔,JJ彼得森,LGM尼尔森,A.水的 X 射线和电子光谱。化学 修订版 2016116,7551-7569。DOI:10.1021/acs.chemrev.5b00672
16.萨顿,A萨尔玛,G坎宁安,EM ; 坦迪,J汉森海涅,MWD贝斯利, NA ; 杨,S埃利斯,上午氦纳米液滴中 NaCl(CH 3 OH) n复合物的红外光谱。J.物理。化学 A 2016 , 120 , 8085–8092。DOI:10.1021/acs.jpca.6b06227
17.福达,AEA塞茨,LC豪斯柴尔德,D布鲁姆,M杨,W赫斯克,C温哈特,L北卡罗来纳州贝斯利观察一氧化氮的共振非弹性 X 射线散射中的双激发。J.物理。化学 莱特。 202011,7476-7482。DOI:10.1021/acs.jpclett.0c01981
18.北卡罗来纳州贝斯利重元素 K 边核电子结合能的密度泛函理论计算。J.化学。理论计算。 202117,3644-3651。DOI:10.1021/acs.jctc.1c00171
北卡罗来纳州贝斯利约翰斯顿,RL斯泰斯,AJ上彭布林克,J.铁团簇结构和稳定性的理论研究J. Mol. 结构:THEOCHEM 1995 , 341 , 75-90。DOI:10.1016/0166-1280(95)04207-M多宾,AJ康纳,JNL贝斯利, NA ; 诺尔斯,PJ沙茨,GCCl( 2 P) + HCl → ClH + Cl( 2 P)反应的从头算势能面耦合。物理。化学 化学 物理。 1999 , 1 , 957−966。DOI:10.1039/a808183b贝斯利, NA ; 赫斯特,法学博士溶剂化对甲酰胺和 N-甲基乙酰胺电子光谱影响的从头算研究。J.物理。化学 甲 1998102,10791-10797。DOI:10.1021/jp982645f贝斯利, NA ; 赫斯特,法学博士定量蛋白质圆二色性计算的理论研究。J. 上午。化学 社会。 1999年121,9636-9644。DOI:10.1021/ja990627l贝斯利, NA ; 李,上午吉尔,PMW分子 Hartree-Fock 动量内部的计算和分析。摩尔。物理。 2002 年100 年,1763-1770 年。DOI:10.1080/00268970110111779科利,CS烤架,直流贝斯利, NA ; 乔库什,S马图塞克,P帕克,AW托里,M新泽西州特罗吉尔,PMW乔治,兆瓦探索光引发剂对自由基聚合的反应性:苯甲酰基自由基的时间分辨红外光谱研究。J. 上午。化学 社会。 2002年124,14952-14958。DOI:10.1021/ja026099m北卡罗来纳州贝斯利溶液中酰胺带的理论模型。J.物理。化学 一个 2004年108,10794-10800。DOI:10.1021/jp046073c贝斯利, NA ; 诺贝尔,A.乙炔、乙烯和苯在 Si(100) 上的 X 射线吸收光谱的瞬态密度泛函理论研究。J.物理。化学 C 2007 , 111 , 3333–3400。DOI:10.1021/jp065160x吉尔伯特,ATB贝斯利, NA ; 吉尔,PMW使用最大重叠法 (MOM) 进行激发态的自洽场计算。J.物理。化学 A 2008 , 112 , 13164–13171。DOI:10.1021/jp801738f楚维林,A美国凯撒Bichoutskaia, E. ; 北卡罗来纳州贝斯利赫洛贝斯托夫,安省关于石墨烯直接转化为富勒烯的机理。纳特。化学 2010 , 2 , 450–453。DOI:10.1038/nchem.644汉森海涅,MWD乔治,兆瓦北卡罗来纳州贝斯利使用源自密度泛函理论的力场研究非谐振动频率的计算。J.物理。化学 A 2012 , 116 , 4417–4425。DOI:10.1021/jp301670f布里格斯,EA贝斯利, NA ; 罗宾逊,D.BODIPY 的 QM/MM 激发态分子动力学和荧光光谱。J.物理。化学 甲 2013117,2644至50年。DOI:10.1021/jp312229b做,H北卡罗来纳州贝斯利离子水簇中的结构和键合。J.物理。化学 A 2013 , 117 , 5385–5391。DOI:10.1021/jp405052g布里格斯,EA北卡罗来纳州贝斯利基于密度泛函理论的基于三氮杂密基的 K +传感器中光致电子转移的分析。J.物理。化学 一个 2015年119,2902至2907年。DOI:10.1021/acs.jpca.5b01124弗兰森,T原田,Y小杉,N贝斯利, NA ; 冬天,B雷尔,JJ彼得森,LGM尼尔森,A.水的 X 射线和电子光谱。化学 修订版 2016116,7551-7569。DOI:10.1021/acs.chemrev.5b00672萨顿,A萨尔玛,G坎宁安,EM ; 坦迪,J汉森海涅,MWD贝斯利, NA ; 杨,S埃利斯,上午氦纳米液滴中 NaCl(CH 3 OH) n复合物的红外光谱。J.物理。化学 A 2016 , 120 , 8085–8092。DOI:10.1021/acs.jpca.6b06227福达,AEA塞茨,LC豪斯柴尔德,D布鲁姆,M杨,W赫斯克,C温哈特,L北卡罗来纳州贝斯利观察一氧化氮的共振非弹性 X 射线散射中的双激发。J.物理。化学 莱特。 202011,7476-7482。DOI:10.1021/acs.jpclett.0c01981北卡罗来纳州贝斯利重元素 K 边核电子结合能的密度泛函理论计算。J.化学。理论计算。 202117,3644-3651。DOI: 10.1021/acs.jctc.1c00171 本文尚未被其他出版物引用。
更新日期:2021-09-30
down
wechat
bug