当前位置: X-MOL 学术J. Biol. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamin-related protein 1 regulates substrate oxidation in skeletal muscle by stabilizing cellular and mitochondrial calcium dynamics.
Journal of Biological Chemistry ( IF 4.0 ) Pub Date : 2021-09-13 , DOI: 10.1016/j.jbc.2021.101196
William T King 1 , Christopher L Axelrod 1 , Elizabeth R M Zunica 2 , Robert C Noland 3 , Gangarao Davuluri 4 , Hisashi Fujioka 5 , Bernard Tandler 6 , Kathryn Pergola 1 , Gerlinda E Hermann 7 , Richard C Rogers 7 , Sandra López-Domènech 8 , Wagner S Dantas 4 , Krisztian Stadler 9 , Charles L Hoppel 10 , John P Kirwan 2
Affiliation  

Mitochondria undergo continuous cycles of fission and fusion to promote inheritance, regulate quality control, and mitigate organelle stress. More recently, this process of mitochondrial dynamics has been demonstrated to be highly sensitive to nutrient supply, ultimately conferring bioenergetic plasticity to the organelle. However, whether regulators of mitochondrial dynamics play a causative role in nutrient regulation remains unclear. In this study, we generated a cellular loss-of-function model for dynamin-related protein 1 (DRP1), the primary regulator of outer membrane mitochondrial fission. Loss of DRP1 (shDRP1) resulted in extensive ultrastructural and functional remodeling of mitochondria, characterized by pleomorphic enlargement, increased electron density of the matrix, and defective NADH and succinate oxidation. Despite increased mitochondrial size and volume, shDRP1 cells exhibited reduced cellular glucose uptake and mitochondrial fatty acid oxidation. Untargeted transcriptomic profiling revealed severe downregulation of genes required for cellular and mitochondrial calcium homeostasis, which was coupled to loss of ATP-stimulated calcium flux and impaired substrate oxidation stimulated by exogenous calcium. The insights obtained herein suggest that DRP1 regulates substrate oxidation by altering whole-cell and mitochondrial calcium dynamics. These findings are relevant to the targetability of mitochondrial fission and have clinical relevance in the identification of treatments for fission-related pathologies such as hereditary neuropathies, inborn errors in metabolism, cancer, and chronic diseases.

中文翻译:

动力蛋白相关蛋白 1 通过稳定细胞和线粒体钙动力学来调节骨骼肌中的底物氧化。

线粒体经历连续的裂变和融合循环,以促进遗传、调节质量控制和减轻细胞器压力。最近,这一线粒体动力学过程已被证明对营养供应高度敏感,最终赋予细胞器生物能量可塑性。然而,线粒体动力学的调节剂是否在营养调节中发挥致病作用仍不清楚。在这项研究中,我们为动力蛋白相关蛋白 1 (DRP1) 生成了细胞功能丧失模型,DRP1 是外膜线粒体裂变的主要调节因子。DRP1 (shDRP1) 的缺失导致线粒体的广泛超微结构和功能重塑,其特征是多形性增大、基质电子密度增加以及 NADH 和琥珀酸氧化缺陷。尽管线粒体大小和体积增加,但 shDRP1 细胞表现出细胞葡萄糖摄取和线粒体脂肪酸氧化减少。非靶向转录组学分析显示细胞和线粒体钙稳态所需基因的严重下调,这与 ATP 刺激的钙通量损失和外源钙刺激的底物氧化受损有关。本文获得的见解表明 DRP1 通过改变全细胞和线粒体钙动力学来调节底物氧化。这些发现与线粒体裂变的靶向性相关,并且在确定裂变相关病理学(如遗传性神经病、先天性代谢错误、癌症和慢性病)的治疗方法方面具有临床意义。shDRP1 细胞表现出细胞葡萄糖摄取减少和线粒体脂肪酸氧化减少。非靶向转录组学分析显示细胞和线粒体钙稳态所需基因的严重下调,这与 ATP 刺激的钙通量损失和外源钙刺激的底物氧化受损有关。本文获得的见解表明 DRP1 通过改变全细胞和线粒体钙动力学来调节底物氧化。这些发现与线粒体裂变的靶向性相关,并且在确定裂变相关病理学(如遗传性神经病、先天性代谢错误、癌症和慢性病)的治疗方法方面具有临床意义。shDRP1 细胞表现出细胞葡萄糖摄取减少和线粒体脂肪酸氧化减少。非靶向转录组学分析显示细胞和线粒体钙稳态所需基因的严重下调,这与 ATP 刺激的钙通量损失和外源钙刺激的底物氧化受损有关。本文获得的见解表明 DRP1 通过改变全细胞和线粒体钙动力学来调节底物氧化。这些发现与线粒体裂变的靶向性相关,并且在确定裂变相关病理学(如遗传性神经病、先天性代谢错误、癌症和慢性病)的治疗方法方面具有临床意义。非靶向转录组学分析显示细胞和线粒体钙稳态所需基因的严重下调,这与 ATP 刺激的钙通量损失和外源钙刺激的底物氧化受损有关。本文获得的见解表明 DRP1 通过改变全细胞和线粒体钙动力学来调节底物氧化。这些发现与线粒体裂变的靶向性相关,并且在确定裂变相关病理学(如遗传性神经病、先天性代谢错误、癌症和慢性病)的治疗方法方面具有临床意义。非靶向转录组学分析显示细胞和线粒体钙稳态所需基因的严重下调,这与 ATP 刺激的钙通量损失和外源钙刺激的底物氧化受损有关。本文获得的见解表明 DRP1 通过改变全细胞和线粒体钙动力学来调节底物氧化。这些发现与线粒体裂变的靶向性相关,并且在确定裂变相关病理学(如遗传性神经病、先天性代谢错误、癌症和慢性病)的治疗方法方面具有临床意义。这与 ATP 刺激的钙通量损失和外源钙刺激的底物氧化受损有关。本文获得的见解表明 DRP1 通过改变全细胞和线粒体钙动力学来调节底物氧化。这些发现与线粒体裂变的靶向性相关,并且在确定裂变相关病理学(如遗传性神经病、先天性代谢错误、癌症和慢性病)的治疗方法方面具有临床意义。这与 ATP 刺激的钙通量损失和外源钙刺激的底物氧化受损有关。本文获得的见解表明 DRP1 通过改变全细胞和线粒体钙动力学来调节底物氧化。这些发现与线粒体裂变的靶向性相关,并且在确定裂变相关病理学(如遗传性神经病、先天性代谢错误、癌症和慢性病)的治疗方法方面具有临床意义。
更新日期:2021-09-13
down
wechat
bug