当前位置: X-MOL 学术Appl. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integrated design and operation of energy systems for residential buildings, commercial buildings, and light industries
Applied Energy ( IF 10.1 ) Pub Date : 2021-09-16 , DOI: 10.1016/j.apenergy.2021.117822
Ruonan Li 1 , Vladimir Mahalec 1
Affiliation  

This work introduces an optimization approach for the design and operation of integrated energy systems of residential structures and light industrial plants to minimize greenhouse gas (GHG) emissions going beyond the best possible results from standalone systems. Unlike previous studies, in this work, heat transfer considers temperatures of heat sources and receptors; production rates of plants are optimized to maximize GHG emissions reduction of the integrated operation. Results from case studies indicate if temperature levels are not considered, more than 33% of deemed heat transfer is infeasible. Operating the integrated plants at a steady daily production rate brings a significant reduction in GHG emissions for systems accessing the northeast U.S. grid. Further reduction of GHG emissions is accomplished by scheduling the production rate. Schedules with at most one daily production rate change have only 0.4% higher GHG emissions than the optimum, which has frequent production rate changes. When the standalone system and integrated system have the same annual total cost, the integrated system reduces GHG emissions by at least 18.8% and reduces electricity purchases by 66%. Therefore, the integrated operation can reduce GHG emissions of the system, where the maximum reduction is achieved by optimizing the design and operation of energy system equipment, considering the temperature of heating demands, and optimizing production rates of plants with constraints applied to changes of the rates.



中文翻译:

住宅建筑、商业建筑和轻工业能源系统的集成设计和运营

这项工作为住宅结构和轻工业工厂的综合能源系统的设计和运行引入了一种优化方法,以最大限度地减少温室气体 (GHG) 排放,超出独立系统的最佳可能结果。与以往的研究不同,在这项工作中,传热考虑了热源和受体的温度;优化工厂的生产率,以最大限度地减少综合运营的温室气体排放。案例研究的结果表明,如果不考虑温度水平,超过 33% 的认定传热是不可行的。以稳定的日产量运行集成工厂可以显着减少接入美国东北部电网的系统的温室气体排放。进一步减少温室气体排放是通过安排生产速度来实现的。每天最多更改一次生产率的计划的温室气体排放量仅比具有频繁生产率变化的最佳计划高 0.4%。当独立系统和集成系统的年总成本相同时,集成系统至少减少 18.8% 的温室气体排放,减少 66% 的电力采购。因此,一体化运行可以减少系统的温室气体排放,通过优化能源系统设备的设计和运行,考虑供热需求的温度,并在约束条件变化的情况下优化工厂的生产率,实现最大的减排。率。当独立系统和集成系统的年总成本相同时,集成系统至少减少 18.8% 的温室气体排放,减少 66% 的电力采购。因此,一体化运行可以减少系统的温室气体排放,通过优化能源系统设备的设计和运行,考虑供热需求的温度,并在约束条件变化的情况下优化工厂的生产率,实现最大的减排。率。当独立系统和集成系统的年总成本相同时,集成系统至少减少 18.8% 的温室气体排放,减少 66% 的电力采购。因此,一体化运行可以减少系统的温室气体排放,通过优化能源系统设备的设计和运行,考虑供热需求的温度,并在约束条件变化的情况下优化工厂的生产率,实现最大的减排。率。

更新日期:2021-09-17
down
wechat
bug