当前位置: X-MOL 学术Water Resour. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and Numerical Study of the Effect of Model Geometric Distortion on Laboratory Modeling of Urban Flooding
Water Resources Research ( IF 4.6 ) Pub Date : 2021-09-16 , DOI: 10.1029/2021wr029666
Xuefang Li 1 , Vasileios Kitsikoudis 2 , Emmanuel Mignot 3 , Pierre Archambeau 1 , Michel Pirotton 1 , Benjamin Dewals 1 , Sébastien Erpicum 1
Affiliation  

Laboratory studies of urban flooding often use geometrically distorted scale models due to the multi-scale nature of these specific flows. The possible bias induced by geometric distortion has never been thoroughly investigated with dedicated laboratory experiments. In this study, we combine experimental and computational modeling to systematically assess the influence of the distortion ratio, that is, the ratio of horizontal to vertical scale factors, on upscaled flow depths and discharge partition between streets. Three flow configurations were considered: a street junction, a street bifurcation, and a small synthetic urban district. When the distortion ratio is varied up to a value of about 5, the upscaled flow depths at the model inlets decrease monotonously and the flow discharge in the branch that conveys the largest portion of the flow is greatly enhanced. For equal flow depths at the model outlets and depending on the configuration, the distortion effect induces a variation of the upstream flow depth approximately from ∼4% to ∼17% and a change in outlet discharge partition up to 24 percentage points. For a distortion ratio above 5, both upscaled upstream flow depths and outlet discharge partition tend to stabilize asymptotically. Our study indicates the direction and magnitude of the bias induced by geometric distortion for a broad range of flow cases, which is valuable for offsetting these effects in practical laboratory studies of urban flooding.

中文翻译:

模型几何失真对城市洪水实验室建模影响的实验和数值研究

由于这些特定流量的多尺度性质,城市洪水的实验室研究通常使用几何扭曲的比例模型。几何失真引起的可能偏差从未通过专门的实验室实验进行过彻底的研究。在这项研究中,我们结合实验和计算模型来系统地评估畸变比,即水平与垂直比例因子的比率,对放大的水流深度和街道之间的排放分区的影响。考虑了三种流动配置:街道交汇点、街道分叉点和小型合成城区。当畸变率变化到大约 5 时,模型入口处增加的水流深度单调递减,输送最大部分水流的支路的水流排放大大增强。对于模型出口处相同的流动深度,根据配置,变形效应导致上游流动深度的变化大约从~4% 到~17%,出口排放分区的变化高达 24 个百分点。对于大于 5 的畸变比,增加的上游流动深度和出口排放分区都趋于渐近稳定。我们的研究表明了由几何变形引起的偏差的方向和大小,适用于广泛的流动情况,这对于在城市洪水的实际实验室研究中抵消这些影响很有价值。对于模型出口处相同的流动深度,根据配置,变形效应导致上游流动深度的变化大约从~4% 到~17%,出口排放分区的变化高达 24 个百分点。对于大于 5 的畸变比,增加的上游流动深度和出口排放分区都趋于渐近稳定。我们的研究表明了由几何变形引起的偏差的方向和大小,适用于广泛的流动情况,这对于在城市洪水的实际实验室研究中抵消这些影响很有价值。对于模型出口处相同的流动深度,根据配置,变形效应导致上游流动深度的变化大约从~4% 到~17%,出口排放分区的变化高达 24 个百分点。对于大于 5 的畸变比,增加的上游流动深度和出口排放分区都趋于渐近稳定。我们的研究表明了由几何变形引起的偏差的方向和大小,适用于广泛的流动情况,这对于在城市洪水的实际实验室研究中抵消这些影响很有价值。上游水流深度和出口排放分区均趋于渐近稳定。我们的研究表明了由几何变形引起的偏差的方向和大小,适用于广泛的流量情况,这对于在城市洪水的实际实验室研究中抵消这些影响很有价值。上游水流深度和出口排放分区均趋于渐近稳定。我们的研究表明了由几何变形引起的偏差的方向和大小,适用于广泛的流动情况,这对于在城市洪水的实际实验室研究中抵消这些影响很有价值。
更新日期:2021-10-01
down
wechat
bug