当前位置: X-MOL 学术ACS Appl. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of Tungsten and Carbon in Germanium Oxide as a High-Performance Electrode for Energy Storage Applications
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-09-16 , DOI: 10.1021/acsaem.1c01674
Diwakar Karuppiah 1 , Rajkumar Palanisamy 1 , Subadevi Rengapillai 1 , Arjunan Ponnaiah 1 , Sivakumar Marimuthu 1
Affiliation  

The worldwide acceptance of electric vehicles requires higher capacity anode materials for achieving better energy density. For that, researchers have been investigating silicon-based composite anode materials to mitigate the intrinsic volume expansion during electrochemical cycling. Unfortunately, the volume expansion of silicon led to poor cyclability and practical viability. This work concentrated on GeO2-based composites that show comparably low intrinsic volume expansion than silicon. Hence, we studied two composites: (i) GeO2@W (binary composite) and (ii) GeO2@W@C (ternary composite) for application in Li-ion and Na-ion batteries (LIBs and SIBs) and supercapacitors (SCs). Appropriate tools were adopted to confirm the structural, elemental, morphological, and textural properties of the as-mentioned two different composites. When the cell is cycled at a low current density of 100 mA g–1, the LIBs of binary and ternary composites deliver appreciable discharge capacities of 1214 and 1387 mAh g–1 with initial Coulombic efficiencies (ICEs) of 71.3 and 76.4%, whereas the SIBs deliver discharge capacities of 201 and 365 mAh g–1 with ICEs of 55.1 and 78.5%, respectively. For supercapacitors, the ternary composite exhibits a specific capacitance of 277 F g–1 at a current rate of 10 A g–1. The superior electrochemical performances of the ternary composite attract wide attention in both high energy and high power density applications.

中文翻译:

钨和碳在氧化锗中作为储能应用的高性能电极的作用

全球对电动汽车的接受需要更高容量的负极材料以实现更好的能量密度。为此,研究人员一直在研究硅基复合负极材料,以减轻电化学循环过程中的固有体积膨胀。不幸的是,硅的体积膨胀导致循环性和实际可行性较差。这项工作集中在基于GeO 2的复合材料上,这些复合材料的固有体积膨胀比硅低。因此,我们研究了两种复合材料:(i)GeO 2 @W(二元复合材料)和(ii)GeO 2@W@C(三元复合材料)用于锂离子和钠离子电池(LIB 和 SIB)和超级电容器(SC)。采用适当的工具来确认上述两种不同复合材料的结构、元素、形态和质地特性。当电池在 100 mA g –1的低电流密度下循环时,二元和三元复合材料的 LIB 可提供 1214 和 1387 mAh g –1 的可观放电容量,初始库仑效率 (ICE) 分别为 71.3 和 76.4%,而SIB 的放电容量分别为 201 和 365 mAh g –1,ICE 分别为 55.1% 和 78.5%。对于超级电容器,三元复合材料在 10 A g 的电流速率下表现出 277 F g –1的比电容–1 . 三元复合材料优越的电化学性能在高能量和高功率密度应用中引起了广泛关注。
更新日期:2021-09-27
down
wechat
bug