当前位置: X-MOL 学术J. Mech. Behav. Biomed. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Restoration of critical defects in the rabbit mandible using osteoblasts and vascular endothelial cells co-cultured with vascular stent-loaded nano-composite scaffolds
Journal of the Mechanical Behavior of Biomedical Materials ( IF 3.3 ) Pub Date : 2021-09-17 , DOI: 10.1016/j.jmbbm.2021.104831
Hong Zhen Xu 1 , Jian Sheng Su 2
Affiliation  

The success of large bone defect repair with tissue engineering technology depends mainly on angiogenesis and osteogenesis. In this study, we prepared poly-caprolactone/nano-hydroxyapatite/beta-calcium phosphate (PCL/nHA/β-TCP) composite scaffolds loaded with poly-(lactic-co-glycolic acid)/nano-hydroxyapatite/collagen/heparin sodium (PLGA/nHA/Col/HS) nanofiber small vascular stent by electrospinning and hot press forming-particle leaching methods. Supramolecular electrostatic self-assembly technology was used to modify the surfaces of small vascular stents to aid in hydrophilicity and anticoagulation. The surfaces of composite scaffolds were modified with an Arg-Gly-Asp (RGD) short peptide by physical adsorption to supply cell adhesion sites. The scaffolds were then combined with rabbit bone marrow-derived osteoblasts (OBs) and rabbit bone marrow-derived vascular endothelial cells (RVECs) to construct large, biologically active vascularized tissue-engineered bone in vitro; this bone was then used to repair critical bone defects in rabbit mandibles. Mechanical and biocompatibility testing results showed that PCL/nHA/β-TCP composite scaffolds loaded with small vascular stents had good surface structure, mechanical properties, biocompatibility, and bone-regeneration induction potential. Twelve weeks after implantation, histological analysis and X-ray scans showed that the use of osteoblasts and vascular endothelial cells co-cultured with PCL/nHA/β-TCP scaffolds was sufficient to repair critical defects in rabbit mandibles.



中文翻译:

使用载有血管支架的纳米复合支架共培养成骨细胞和血管内皮细胞修复兔下颌骨的关键缺陷

用组织工程技术修复大骨缺损的成功主要取决于血管生成和成骨。在这项研究中,我们制备了聚己内酯/纳米羟基磷灰石/β-磷酸钙(PCL/nHA/β-TCP)复合支架,负载聚(乳酸-乙醇酸共聚物)/纳米羟基磷灰石/胶原蛋白/肝素钠(PLGA/nHA/Col/HS) 纳米纤维小血管支架通过静电纺丝和热压成型-颗粒浸出方法。超分子静电自组装技术被用于修饰小血管支架的表面,以帮助亲水和抗凝。通过物理吸附用精氨酸-甘氨酸-天冬氨酸 (RGD) 短肽修饰复合支架的表面,以提供细胞粘附位点。然后将支架与兔骨髓来源的成骨细胞(OBs)和兔骨髓来源的血管内皮细胞(RVECs)结合,在体外构建大的、具有生物活性的血管化组织工程骨;这种骨头随后被用于修复兔下颌骨的严重骨缺损。力学和生物相容性测试结果表明,负载小血管支架的PCL/nHA/β-TCP复合支架具有良好的表面结构、力学性能、生物相容性和骨再生诱导潜力。植入 12 周后,组织学分析和 X 射线扫描表明,使用与 PCL/nHA/β-TCP 支架共培养的成骨细胞和血管内皮细胞足以修复兔下颌骨的关键缺陷。体外生物活性血管化组织工程骨;这种骨头随后被用于修复兔下颌骨的严重骨缺损。力学和生物相容性测试结果表明,负载小血管支架的PCL/nHA/β-TCP复合支架具有良好的表面结构、力学性能、生物相容性和骨再生诱导潜力。植入 12 周后,组织学分析和 X 射线扫描表明,使用与 PCL/nHA/β-TCP 支架共培养的成骨细胞和血管内皮细胞足以修复兔下颌骨的关键缺陷。体外生物活性血管化组织工程骨;这种骨头随后被用于修复兔下颌骨的严重骨缺损。力学和生物相容性测试结果表明,负载小血管支架的PCL/nHA/β-TCP复合支架具有良好的表面结构、力学性能、生物相容性和骨再生诱导潜力。植入 12 周后,组织学分析和 X 射线扫描表明,使用与 PCL/nHA/β-TCP 支架共培养的成骨细胞和血管内皮细胞足以修复兔下颌骨的关键缺陷。力学和生物相容性测试结果表明,负载小血管支架的PCL/nHA/β-TCP复合支架具有良好的表面结构、力学性能、生物相容性和骨再生诱导潜力。植入 12 周后,组织学分析和 X 射线扫描表明,使用与 PCL/nHA/β-TCP 支架共培养的成骨细胞和血管内皮细胞足以修复兔下颌骨的关键缺陷。力学和生物相容性测试结果表明,负载小血管支架的PCL/nHA/β-TCP复合支架具有良好的表面结构、力学性能、生物相容性和骨再生诱导潜力。植入 12 周后,组织学分析和 X 射线扫描表明,使用与 PCL/nHA/β-TCP 支架共培养的成骨细胞和血管内皮细胞足以修复兔下颌骨的关键缺陷。

更新日期:2021-09-21
down
wechat
bug