当前位置: X-MOL 学术IEEE Trans. Plasma Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multichannel Operation of a Multi-Gap, Multichannel Spark Gap Switch Using a Low-Magnitude Trigger Pulse and Its Performance Evaluation
IEEE Transactions on Plasma Science ( IF 1.3 ) Pub Date : 2021-08-24 , DOI: 10.1109/tps.2021.3105023
Ankur Chowdhury , Alok K. Saxena , K. D. Joshi

This article describes the performance of a multi-gap, multichannel (MGMC) spark gap switch, evaluated numerically and experimentally, to achieve multichanneling using a relatively low-magnitude trigger pulse. First, an electrostatic analysis of the switch geometry was carried out using COMSOL Multiphysics 5.5 to determine the electric field distribution during high-voltage hold-off before triggering and to determine the coupling parameters between trigger and other intermediate electrodes of the switch. Second, a circuit model was developed in PSpice Lite 16.6 for predicting the process of channel formation and its influence on adjacent channels. Based on the simulation results obtained, a six-gap, eight-channel, planar MGMC switch operating in air has been designed and developed. The developed switch was, then, incorporated into a compact experimental setup to experimentally evaluate various switch parameters such as inductance, switching delay, jitter, and closing time when triggered using a negative-polarity trigger pulse of magnitude −40 kV, generated using a compact, in-house developed trigger generator. In contrast to most of the reported MGMC switches that use complicated Marx-based generators to produce ≥120-kV trigger pulses for multichannel formation, the experimental results, thus obtained, report comparable switch performance using a low-magnitude (−40 kV) trigger pulse. In addition, framing and streak camera images taken during the current discharge indicate the presence of ~6 luminous channels. In addition, short-circuit experiments for estimating switch inductance by consecutively shorting one or more channels also indicate multichanneling in the switch using a low-magnitude trigger pulse.

中文翻译:


使用低幅度触发脉冲的多间隙、多通道火花隙开关的多通道操作及其性能评估



本文介绍了多间隙、多通道 (MGMC) 火花隙开关的性能,并通过数值和实验进行了评估,以使用相对较低幅度的触发脉冲实现多通道。首先,使用 COMSOL Multiphysics 5.5 对开关几何结构进行静电分析,以确定触发前高压释抑期间的电场分布,并确定触发器与开关其他中间电极之间的耦合参数。其次,在PSpice Lite 16.6中开发了一个电路模型,用于预测通道形成过程及其对相邻通道的影响。基于获得的仿真结果,设计并开发了一种在空气中工作的六间隙、八通道、平面MGMC开关。然后,将所开发的开关纳入紧凑的实验装置中,以实验评估各种开关参数,例如使用紧凑型器件生成的 -40 kV 的负极性触发脉冲触发时的电感、开关延迟、抖动和闭合时间。 ,内部开发的触发发生器。与大多数报道的 MGMC 开关使用复杂的 Marx 发生器产生 ≥120 kV 触发脉冲以进行多通道形成相比,由此获得的实验结果报告了使用低幅度(−40 kV)触发器的可比开关性能脉冲。此外,在当前放电期间拍摄的分幅和条纹相机图像表明存在约 6 个发光通道。此外,通过连续短路一个或多个通道来估计开关电感的短路实验也表明使用低幅度触发脉冲的开关中的多通道。
更新日期:2021-08-24
down
wechat
bug