当前位置: X-MOL 学术Sens. Actuators A Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Theoretical investigations of hydrogen gas sensing and storage capacity of graphene-based materials: A review
Sensors and Actuators A: Physical ( IF 4.1 ) Pub Date : 2021-09-17 , DOI: 10.1016/j.sna.2021.113118
Mehak Singla 1 , Neena Jaggi 1
Affiliation  

Excessive usage of fossil fuel energy in recent years has prompted the development of an alternative fuel with potential to meet energy requirements. Hydrogen has emerged as one of those fuels which can be produced from renewable sources and its combustion produces only heat and water. It is a high-quality energy carrier and can be used in transportation and energy storage devices. Many studies have been performed to examine the appropriate hydrogen sensing and storage materials. Graphene-based materials can be exploited for hydrogen adsorption and storage owing to their wonderful properties i.e. a very large surface area, high conductivity, high mobility of charge carriers, great mechanical strength, etc. Pure graphene does not comply with the criteria for hydrogen storage as set out in the Department of Energy, United States of America. As a result, efforts are being made in this direction to modify graphene and meet the specific requirements. The hydrogen storage on graphene-based solid-state sensors may occur through either physisorption or chemisorption. Density Functional theory helps to estimate the capacity of defected and doped graphene materials for hydrogen adsorption before experimental investigation. Multilayer graphene influences the performance of gas sensing by intercalating metal and non-metal atoms via atomic bonding. It estimates the adsorption energy, charge density, Density of states, band gap values, and gravimetric density to determine the sensing ability of the material. The present review is focused on the several DFT studies made for investigating the hydrogen adsorption and storage properties in graphene-based materials.



中文翻译:

石墨烯基材料氢气传感和存储能力的理论研究:综述

近年来化石燃料能源的过度使用促使开发具有潜力满足能源需求的替代燃料。氢已成为可从可再生能源生产的燃料之一,其燃烧仅产生热量和水。它是一种优质的能源载体,可用于交通运输和储能设备。已经进行了许多研究来检查适当的氢传感和存储材料。石墨烯基材料具有非常大的表面积、高电导率、载流子迁移率高、机械强度大等优异特性,可用于吸氢和储氢。纯石墨烯不符合储氢标准如美利坚合众国能源部所述。因此,正在朝着这个方向努力修改石墨烯并满足特定要求。基于石墨烯的固态传感器上的储氢可以通过物理吸附或化学吸附发生。密度泛函理论有助于在实验研究之前估计缺陷和掺杂石墨烯材料的氢吸附能力。多层石墨烯通过原子键插入金属和非金属原子来影响气敏性能。它估计吸附能、电荷密度、态密度、带隙值和重量密度,以确定材料的传感能力。本综述的重点是为研究石墨烯基材料中的氢吸附和储存特性而进行的几项 DFT 研究。正在朝着这个方向努力修改石墨烯并满足特定要求。基于石墨烯的固态传感器上的储氢可以通过物理吸附或化学吸附发生。密度泛函理论有助于在实验研究之前估计缺陷和掺杂石墨烯材料的氢吸附能力。多层石墨烯通过原子键插入金属和非金属原子来影响气敏性能。它估计吸附能、电荷密度、态密度、带隙值和重量密度,以确定材料的传感能力。本综述的重点是为研究石墨烯基材料中的氢吸附和储存特性而进行的几项 DFT 研究。正在朝着这个方向努力修改石墨烯并满足特定要求。基于石墨烯的固态传感器上的储氢可以通过物理吸附或化学吸附发生。密度泛函理论有助于在实验研究之前估计缺陷和掺杂石墨烯材料的氢吸附能力。多层石墨烯通过原子键插入金属和非金属原子来影响气敏性能。它估计吸附能、电荷密度、态密度、带隙值和重量密度,以确定材料的传感能力。本综述的重点是为研究石墨烯基材料中的氢吸附和储存特性而进行的几项 DFT 研究。

更新日期:2021-09-27
down
wechat
bug