当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reactive wear protection through strong and deformable oxide nanocomposite surfaces
Nature Communications ( IF 14.7 ) Pub Date : 2021-09-17 , DOI: 10.1038/s41467-021-25778-y
Chang Liu 1 , Zhiming Li 2, 3 , Wenjun Lu 1, 4 , Yan Bao 5 , Wenzhen Xia 1, 6 , Xiaoxiang Wu 1, 7 , Huan Zhao 1 , Baptiste Gault 1, 8 , Chenglong Liu 5 , Michael Herbig 1 , Alfons Fischer 1 , Gerhard Dehm 1 , Ge Wu 1 , Dierk Raabe 1
Affiliation  

Wear-related energy and material loss cost over 2500 Billion Euro per year. Traditional wisdom suggests that high-strength materials reveal low wear rates, yet, their plastic deformation mechanisms also influence their wear performance. High strength and homogeneous deformation behavior, which allow accommodating plastic strain without cracking or localized brittle fracture, are crucial for developing wear-resistant metals. Here, we present an approach to achieve superior wear resistance via in-situ formation of a strong and deformable oxide nanocomposite surface during wear, by reaction of the metal surface with its oxidative environment, a principle that we refer to as ‘reactive wear protection’. We design a TiNbZr-Ag alloy that forms an amorphous-crystalline oxidic nanocomposite surface layer upon dry sliding. The strong (2.4 GPa yield strength) and deformable (homogeneous deformation to 20% strain) nanocomposite surface reduces the wear rate of the TiNbZr-Ag alloy by an order of magnitude. The reactive wear protection strategy offers a pathway for designing ultra-wear resistant alloys, where otherwise brittle oxides are turned to be strong and deformable for improving wear resistance.



中文翻译:

通过坚固且可变形的氧化物纳米复合材料表面提供反应磨损保护

每年与磨损相关的能源和材料损失成本超过 25000 亿欧元。传统观点认为,高强度材料的磨损率低,但它们的塑性变形机制也会影响其磨损性能。高强度和均匀的变形行为,允许在不开裂或局部脆性断裂的情况下适应塑性应变,对于开发耐磨金属至关重要。在这里,我们提出了一种通过在磨损过程中通过金属表面与其氧化环境的反应原位形成坚固且可变形的氧化物纳米复合材料表面来实现卓越耐磨性的方法,我们将这一原理称为“反应磨损保护” . 我们设计了一种 TiNbZr-Ag 合金,可在干滑动时形成非晶结晶氧化纳米复合材料表面层。强者(2。4 GPa 屈服强度)和可变形(均匀变形至 20% 应变)纳米复合材料表面将 TiNbZr-Ag 合金的磨损率降低了一个数量级。反应磨损保护策略为设计超耐磨合金提供了一条途径,否则脆性氧化物会变得坚固且可变形,以提高耐磨性。

更新日期:2021-09-17
down
wechat
bug