当前位置: X-MOL 学术Commun. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nuclear-driven production of renewable fuel additives from waste organics
Communications Chemistry ( IF 5.9 ) Pub Date : 2021-09-17 , DOI: 10.1038/s42004-021-00572-5
Arran George Plant 1 , Bor Kos 2 , Anže Jazbec 2 , Luka Snoj 2 , Vesna Najdanovic-Visak 3 , Malcolm John Joyce 1
Affiliation  

Non-intermittent, low-carbon energy from nuclear or biofuels is integral to many strategies to achieve Carbon Budget Reduction targets. However, nuclear plants have high, upfront costs and biodiesel manufacture produces waste glycerol with few secondary uses. Combining these technologies, to precipitate valuable feedstocks from waste glycerol using ionizing radiation, could diversify nuclear energy use whilst valorizing biodiesel waste. Here, we demonstrate solketal (2,2-dimethyl-1,3-dioxolane-4-yl) and acetol (1-hydroxypropan-2-one) production is enhanced in selected aqueous glycerol-acetone mixtures with γ radiation with yields of 1.5 ± 0.2 µmol J−1 and 1.8 ± 0.2 µmol J−1, respectively. This is consistent with the generation of either the stabilized, protonated glycerol cation (CH2OH-CHOH-CH2OH2+ ) from the direct action of glycerol, or the hydronium species, H3O+, via water radiolysis, and their role in the subsequent acid-catalyzed mechanisms for acetol and solketal production. Scaled to a hypothetically compatible range of nuclear facilities in Europe (i.e., contemporary Pressurised Water Reactor designs or spent nuclear fuel stores), we estimate annual solketal production at approximately (1.0 ± 0.1) × 104 t year−1. Given a forecast increase of 5% to 20% v/v% in the renewable proportion of commercial petroleum blends by 2030, nuclear-driven, biomass-derived solketal could contribute towards net-zero emissions targets, combining low-carbon co-generation and co-production.



中文翻译:

从废有机物中核驱动生产可再生燃料添加剂

来自核能或生物燃料的非间歇性低碳能源是实现碳预算减少目标的许多战略不可或缺的一部分。然而,核电站的前期成本很高,而且生物柴油制造过程中产生的废甘油很少有二次利用。结合这些技术,使用电离辐射从废甘油中沉淀出有价值的原料,可以使核能利用多样化,同时使生物柴油废物稳定化。在这里,我们展示了丙酮醇(2,2-二甲基-1,3-二氧戊环-4-基)和丙酮醇(1-羟基丙-2-酮)的产生在具有 γ 辐射的选定水性甘油-丙酮混合物中得到增强,产率为 1.5分别为± 0.2 µmol J -1和1.8 ± 0.2 µmol J -1。这与稳定的质子化甘油阳离子(CH2 OH-CHOH-CH 2 OH 2 +  ) 来自甘油或水合氢离子 H 3 O +的直接作用,通过水辐射分解,以及它们在随后的酸催化机制中用于丙酮醇和丙酮醇生产的作用。扩大到欧洲核设施的假设兼容范围(即现代压水反应堆设计或乏核燃料储存),我们估计每年的亚硫酸钠产量约为 (1.0 ± 0.1) × 10 4 t year −1. 鉴于到 2030 年商用石油混合物的可再生比例预计将增加 5% 至 20% v/v%,核驱动、生物质衍生的 solketal 可有助于实现净零排放目标,结合低碳热电联产和联合制作。

更新日期:2021-09-17
down
wechat
bug