当前位置: X-MOL 学术Regen. Biomater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Porous tantalum-composited gelatin nanoparticles hydrogel integrated with mesenchymal stem cell-derived endothelial cells to construct vascularized tissue in vivo
Regenerative Biomaterials ( IF 5.6 ) Pub Date : 2021-09-16 , DOI: 10.1093/rb/rbab051
Zhenhua Zhao 1, 2 , Mang Wang 1 , Fei Shao 3 , Ge Liu 2, 4 , Junlei Li 2 , Xiaowei Wei 2 , Xiuzhi Zhang 2, 5 , Jiahui Yang 2 , Fang Cao 6 , Qiushi Wang 7 , Huanan Wang 3 , Dewei Zhao 1, 2
Affiliation  

The ideal scaffold material of angiogenesis should have mechanical strength and provide appropriate physiological microporous structures to mimic the extracellular matrix environment. In this study, we constructed an integrated three-dimensional scaffold material using porous tantalum (pTa), gelatin nanoparticles (GNPs) hydrogel, and seeded with bone marrow mesenchymal stem cells (BMSCs)-derived endothelial cells (ECs) for vascular tissue engineering. The characteristics and biocompatibility of pTa and GNPs hydrogel were evaluated by mechanical testing, scanning electron microscopy, cell counting kit, and live-cell assay. The BMSCs-derived ECs were identified by flow cytometry and angiogenesis assay. BMSCs-derived ECs were seeded on the pTa-GNPs hydrogel scaffold and implanted subcutaneously in nude mice. Four weeks after the operation, the scaffold material was evaluated by histomorphology. The superior biocompatible ability of pTa-GNPs hydrogel scaffold was observed. Our in vivo results suggested that 28 days after implantation, the formation of the stable capillary-like network in scaffold material could be promoted significantly. The novel, integrated pTa-GNPs hydrogel scaffold is biocompatible with the host, and exhibits biomechanical and angiogenic properties. Moreover, combined with BMSCs-derived ECs, it could construct vascular engineered tissue in vivo. This study may provide a basis for applying pTa in bone regeneration and autologous BMSCs in tissue-engineered vascular grafts.

中文翻译:

多孔钽复合明胶纳米粒子水凝胶与间充质干细胞源性内皮细胞整合构建体内血管化组织

理想的血管生成支架材料应具有机械强度并提供适当的生理微孔结构来模拟细胞外基质环境。在这项研究中,我们使用多孔钽(pTa)、明胶纳米粒子(GNP)水凝胶构建了一种集成的三维支架材料,并接种了骨髓间充质干细胞(BMSC)衍生的内皮细胞(EC),用于血管组织工程。通过机械测试、扫描电子显微镜、细胞计数试剂盒和活细胞测定评估 pTa 和 GNPs 水凝胶的特性和生物相容性。通过流式细胞术和血管生成测定来鉴定源自 BMSC 的 EC。将 BMSCs 衍生的 ECs 接种在 pTa-GNPs 水凝胶支架上并植入裸鼠皮下。术后4周,通过组织形态学评价支架材料。观察到 pTa-GNPs 水凝胶支架具有优异的生物相容性。我们的体内结果表明,植入后28天,可以显着促进支架材料中稳定的毛细血管样网络的形成。新型集成 pTa-GNPs 水凝胶支架与宿主具有生物相容性,并表现出生物力学和血管生成特性。此外,与BMSCs衍生的ECs结合,它可以在体内构建血管工程组织。该研究可为pTa在骨再生中的应用以及自体BMSC在组织工程血管移植中的应用提供基础。
更新日期:2021-09-16
down
wechat
bug