当前位置: X-MOL 学术J. Thermoplast. Compos. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microscopic level modeling of induction welding heating mechanisms in thermoplastic composites
Journal of Thermoplastic Composite Materials ( IF 3.3 ) Pub Date : 2021-09-15 , DOI: 10.1177/08927057211046648
Darun Barazanchy 1 , Michel van Tooren 1 , Mohammod Ali 2
Affiliation  

Simulation and analysis of electromagnetic induction heating of continuous conductive fiber-based composite materials is used to (in)validate a series of hypotheses on the physics dominating the heating process. The behavior of carbon fibers with and without surrounding polymer in an alternating electromagnetic field is studied at a microscopic level in ANSYS Maxwell using the solid loss to quantify heat generation in the composite material. To limit the number of elements, the fibers are modeled with a polyhedron cross-section instead of a circular cross-section. In addition, each layer is modeled as an layer of fibers, e.g. 20 fibers placed next to each other. The simulations indicate that samples with fibers oriented in 0 and 90 orientation yield a substantial higher solid loss than fibers oriented in the 0 orientation only. The solid loss in both cases is however not enough to explain the level of heating observed in practice. Filling the volumes between fibers with polymer results in greater solid loss than samples with no polymer between the fibers, at equal fiber volume fraction. Note, no contact between fibers is modeled. The conductivity of the polymer is experimentally determined. The lab tests show relatively low finite resistance values in the transverse direction, indicating that the polymer in a composite should not be considered an isolator. The simulations seem to justify the conclusion that heating of thermoplastic composites in an alternating magnetic field rely on currents through the polymer. Without the polymer and subsequently no polymer conductivity, even if the electrical fields are strong there is almost no heat generated. The carbon fibers are required to be in proximity of each other to create the electrical fields that induce the current through the polymer. The heating is determined by the product of current density squared times the resistivity of the polymer.



中文翻译:

热塑性复合材料中感应焊接加热机制的微观水平建模

连续导电纤维基复合材料的电磁感应加热的模拟和分析用于(验证)关于主导加热过程的物理的一系列假设。在 ANSYS Maxwell 中,使用固体损失量化复合材料中的热量生成,在微观层面研究了碳纤维在交变电磁场中有和没有周围聚合物的行为。为了限制单元的数量,纤维被建模为多面体横截面而不是圆形横截面。此外,每一层都被建模为一层纤维,例如,20 根纤维并排放置。模拟表明,纤维在 0 和 90 方向取向的样品比仅在 0 方向取向的纤维产生明显更高的固体损失。然而,这两种情况下的固体损失不足以解释在实践中观察到的加热水平。在相同的纤维体积分数下,用聚合物填充纤维之间的体积会导致比纤维之间没有聚合物的样品更大的固体损失。请注意,没有对纤维之间的接触进行建模。聚合物的电导率是通过实验确定的。实验室测试显示横向有限电阻值相对较低,表明复合材料中的聚合物不应被视为隔离器。模拟似乎证明了在交变磁场中加热热塑性复合材料依赖于通过聚合物的电流的结论。没有聚合物并随后没有聚合物导电性,即使电场很强,也几乎不会产生热量。碳纤维需要彼此靠近以产生电场,从而感应电流通过聚合物。加热由电流密度平方乘以聚合物电阻率的乘积确定。

更新日期:2021-09-16
down
wechat
bug