当前位置: X-MOL 学术Ecol Modell › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A discrete model of ontogenetic growth
Ecological Modelling ( IF 2.6 ) Pub Date : 2021-09-16 , DOI: 10.1016/j.ecolmodel.2021.109752
Shu-miao Shu , Wan-ze Zhu , George Kontsevich , Yang-yi Zhao , Wen-zhi Wang , Xiao-xiang Zhao , Xiao-dan Wang

Organism growth underlies numerous ecological processes. However, existing growth models from the von Bertalanffy family do not consider variable growth states (e.g., changes in resource uptake) and/or non-instantaneous changes in the growth rate of an organism along its size gradient. To address the above two points, we derived an iterative growth model (IGM) based on the necessary respiration allocation (i.e., maintenance and growth respiration), the intrinsic growth rate of tissue, and the von Bertalanffy paradigm. Some of the model parameters not only reflect the change of growth state, but also maintain a strict relationship with other parameters of biological and/or thermodynamic significance, making the model more basic and flexible. We then tested the basic performance of the IGM and its extension, and found that they are supported by some data, with different orders of magnitude, involving animals and plants. Starting with the IGM, we found that the existing metabolic growth models (e.g., the ontogenetic growth model (OGM) and its extensions) can be characterized as a special form of IGM. Not only that, the IGM also suggests true growth dynamics should have not an explicit analytic solution in most cases and lie somewhere between the Richards and Gompertz equations. Finally, the IGM revealed that the maximum biomass of an organism (M) is determined by organism average growth rate (D/T), maintenance respiration coefficient (mr) and resting metabolism exponent (b). The resulting effect of temperature on M will depend on the sensitivity to the temperature of both D/T and mr. If the former is the more sensitive of the two, M will increase. If not, it will decrease. The IGM displays great potential for the modeling and prediction of plants, endotherms and exotherms.



中文翻译:

个体发育的离散模型

生物体的生长是众多生态过程的基础。然而,来自von Bertalanffy 家族的现有生长模型没有考虑可变生长状态(例如,资源吸收的变化)和/或生物体沿着其尺寸梯度的生长速率的非瞬时变化。为了解决以上两点,我们基于必要的呼吸分配(即维持和生长呼吸)、组织的内在生长率和von Bertalanffy范式推导出了迭代生长模型(IGM)。一些模型参数不仅反映了生长状态的变化,而且还与其他具有生物学和/或热力学意义的参数保持着严格的关系,使模型更加基础和灵活。然后我们测试了 IGM 及其扩展的基本性能,并发现它们得到了一些数据的支持,具有不同的数量级,涉及动物和植物。从 IGM 开始,我们发现现有的代谢生长模型(例如个体发育生长模型 (OGM) 及其扩展)可以表征为 IGM 的特殊形式。不仅如此,IGM 还表明,在大多数情况下,真正的增长动态不应有明确的解析解,而是介于理查兹方程和 Gompertz 方程之间。最后,IGM 揭示了生物体的最大生物量(IGM 还表明,在大多数情况下,真正的增长动态不应该有明确的解析解,而是介于理查兹方程和 Gompertz 方程之间。最后,IGM 揭示了生物体的最大生物量(IGM 还表明,在大多数情况下,真正的增长动态不应该有明确的解析解,而是介于理查兹方程和 Gompertz 方程之间。最后,IGM 揭示了生物体的最大生物量(M ) 由生物体平均生长速率 ( D / T )、维持呼吸系数 ( m r ) 和静息代谢指数 ( b ) 决定。温度对M的最终影响将取决于D / Tm r对温度的敏感性。如果前者是两者中更敏感的,则M会增加。如果没有,它会减少。IGM 在植物、吸热和放热的建模和预测方面显示出巨大的潜力。

更新日期:2021-09-16
down
wechat
bug