当前位置: X-MOL 学术Int. J. Adv. Manuf. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Using uniform design and regression methodology of turning parameters study of nickel alloy
The International Journal of Advanced Manufacturing Technology ( IF 2.9 ) Pub Date : 2021-07-23 , DOI: 10.1007/s00170-021-07584-4
Shao-Hsien Chen , Chih-Hung Hsu

The nickel alloy has good mechanical strength and corrosion resistance at high temperature; it is extensively used in aerospace and biomedical and energy industries, as well as alloy designs of different chemical compositions to achieve different mechanical properties. However, for high mechanical strength, low thermal conductivity, and surface hardening property, the nickel alloy has worse cutting tool life and machining efficiency than general materials. Therefore, how to select the optimum machining parameters will influence the workpiece quality, cost, and machining time. This research will be using a new experimental design methodology to the cutting parameter planning for nickel-based alloy cutting test, and used the uniform design methodology to cutting test to reduce the number of experiments. Three independent variable parameters are set up, including cutting speed, feed rate, and cutting depth, and four dependent variable parameters are set up, including cutting tool wear, surface roughness, machining time, and cutting force. A nickel alloy turning parameter model is built by using regression analysis to further predict the I/O relationship among various combinations of variables. The errors between actual values and prediction values are validated. When the cutting tool wear (VB) is 2.72~6.18%, the surface roughness (Ra) is 4.10~7.72%, the machining time (T) is 3.75~8.82%, and the cutting force (N) is 1.54~7.42%; the errors of various dependent variables are approximately less than 10%, so a high precision estimation model is obtained through a few experiments of uniform design method.



中文翻译:

镍合金车削参数研究的均匀设计和回归方法

镍合金在高温下具有良好的机械强度和耐腐蚀性;它广泛用于航空航天和生物医学和能源行业,以及不同化学成分的合金设计,以实现不同的机械性能。但是,由于机械强度高、热导率低、表面硬化性能好,镍合金的刀具寿命和加工效率比一般材料差。因此,如何选择最佳加工参数将影响工件质量、成本和加工时间。本研究将采用新的实验设计方法对镍基合金切削试验的切削参数进行规划,并采用统一设计方法进行切削试验,以减少实验次数。设置三个自变量参数,包括切削速度、进给速度和切削深度,设置四个因变量参数,包括刀具磨损、表面粗糙度、加工时间和切削力。通过回归分析建立镍合金车削参数模型,进一步预测各种变量组合之间的I/O关系。验证实际值和预测值之间的误差。当刀具磨损(VB)为2.72~6.18%,表面粗糙度(Ra)为4.10~7.72%,加工时间(T)为3.75~8.82%,切削力(N)为1.54~7.42%时; 各因变量的误差约小于10%,通过多次均匀设计方法的实验,得到了高精度的估计模型。和切削深度,并设置四个因变量参数,包括刀具磨损、表面粗糙度、加工时间和切削力。通过回归分析建立镍合金车削参数模型,进一步预测各种变量组合之间的I/O关系。验证实际值和预测值之间的误差。当刀具磨损(VB)为2.72~6.18%,表面粗糙度(Ra)为4.10~7.72%,加工时间(T)为3.75~8.82%,切削力(N)为1.54~7.42%时; 各因变量的误差约小于10%,通过多次均匀设计方法的实验,得到了高精度的估计模型。和切削深度,并设置四个因变量参数,包括刀具磨损、表面粗糙度、加工时间和切削力。通过回归分析建立镍合金车削参数模型,进一步预测各种变量组合之间的I/O关系。验证实际值和预测值之间的误差。当刀具磨损(VB)为2.72~6.18%,表面粗糙度(Ra)为4.10~7.72%,加工时间(T)为3.75~8.82%,切削力(N)为1.54~7.42%时; 各因变量的误差约小于10%,通过多次均匀设计方法的实验,得到了高精度的估计模型。和切削力。通过回归分析建立镍合金车削参数模型,进一步预测各种变量组合之间的I/O关系。验证实际值和预测值之间的误差。当刀具磨损(VB)为2.72~6.18%,表面粗糙度(Ra)为4.10~7.72%,加工时间(T)为3.75~8.82%,切削力(N)为1.54~7.42%时; 各因变量的误差约小于10%,通过多次均匀设计方法的实验,得到了高精度的估计模型。和切削力。通过回归分析建立镍合金车削参数模型,进一步预测各种变量组合之间的I/O关系。验证实际值和预测值之间的误差。当刀具磨损(VB)为2.72~6.18%,表面粗糙度(Ra)为4.10~7.72%,加工时间(T)为3.75~8.82%,切削力(N)为1.54~7.42%时; 各因变量的误差约小于10%,通过多次均匀设计方法的实验,得到了高精度的估计模型。当刀具磨损(VB)为2.72~6.18%,表面粗糙度(Ra)为4.10~7.72%,加工时间(T)为3.75~8.82%,切削力(N)为1.54~7.42%时; 各因变量的误差约小于10%,通过多次均匀设计方法的实验,得到了高精度的估计模型。当刀具磨损(VB)为2.72~6.18%,表面粗糙度(Ra)为4.10~7.72%,加工时间(T)为3.75~8.82%,切削力(N)为1.54~7.42%时; 各因变量的误差约小于10%,通过多次均匀设计方法的实验,得到了高精度的估计模型。

更新日期:2021-09-16
down
wechat
bug