当前位置: X-MOL 学术Microchim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Excitation-emission fluorescence matrix acquired from glutathione capped CdSeS/ZnS quantum dots in combination with chemometric tools for pattern-based sensing of neurotransmitters
Microchimica Acta ( IF 5.3 ) Pub Date : 2021-09-15 , DOI: 10.1007/s00604-021-04984-x
Klaudia Głowacz 1 , Marcin Drozd 1, 2 , Patrycja Ciosek-Skibińska 1
Affiliation  

The presented work concerns pattern-based sensing with quantum dots for the identification and quantification of neurotransmitters by means of excitation-emission fluorescence spectroscopy (2D fluorescence). In the framework of this study, glutathione capped CdSeS/ZnS nanocrystals were used as non-specific nanoreceptors capable of differentiated interaction with neurotransmitters. The pattern-based sensing with QDs was realized by using excitation-emission fluorescence spectroscopy to provide analyte-specific multidimensional optical information. These characteristic fluorescent response patterns were processed by unfolded partial least squares–discriminant analysis, showing that satisfactory identification of all investigated neurotransmitters: dopamine, norepinephrine, epinephrine, serotonin, GABA, and acetylcholine, can be achieved through the proposed sensing strategy. The impact of the considered fluorescence signal (datum, i.e. zeroth-order data acquired per sample; spectrum, i.e. first-order data acquired per sample; excitation-emission matrix, i.e. second-order data acquired per sample) on the sensing capability of glutathione capped QDs was also verified. The best performance parameters such as accuracy, precision, sensitivity, and specificity were obtained using excitation-emission matrices (88.9–93.3%, 0.93–0.95, 0.89–0.93, and 0.99–1.00, respectively). Thus, it was revealed that excitation-emission fluorescence spectroscopy may improve the recognition of neurotransmitters while using only one type of nanoreceptor. Furthermore, is was demonstrated that the proposed excitation-emission fluorescence spectroscopy assisted QD assay coupled with unfolded partial least squares regression can be successfully utilized for quantitative determination of catecholamine neurotransmitters at the micromolar concentration range with R2 in the range 0.916–0.987. Consequently, the proposed sensing strategy has the potential to significantly simplify the sensing element and to expand the pool of bioanalytes so far detectable with the use of QDs.

Graphical abstract



中文翻译:


从谷胱甘肽封端的 CdSeS/ZnS 量子点获得的激发-发射荧光矩阵,结合化学计量工具,用于基于模式的神经递质传感



所提出的工作涉及基于模式的量子点传感,通过激发发射荧光光谱(2D 荧光)来识别和量化神经递质。在本研究的框架中,谷胱甘肽封端的 CdSeS/ZnS 纳米晶体被用作能够与神经递质发生差异化相互作用的非特异性纳米受体。通过使用激发发射荧光光谱提供分析物特定的多维光学信息,实现了基于图案的量子点传感。这些特征荧光响应模式通过展开的偏最小二乘判别分析进行处理,表明通过所提出的传感策略可以对所有研究的神经递质:多巴胺、去甲肾上腺素、肾上腺素、血清素、GABA 和乙酰胆碱进行令人满意的识别。所考虑的荧光信号(数据,即每个样品采集的零阶数据;光谱,即每个样品采集的一阶数据;激发发射矩阵,即每个样品采集的二阶数据)对谷胱甘肽传感能力的影响还验证了上限 QD。使用激发发射矩阵获得了最佳性能参数,如准确度、精密度、灵敏度和特异性(分别为 88.9-93.3%、0.93-0.95、0.89-0.93 和 0.99-1.00)。因此,表明激发发射荧光光谱可以在仅使用一种类型的纳米受体的情况下提高神经递质的识别。 此外,还证明了所提出的激发发射荧光光谱辅助QD测定与展开的偏最小二乘回归相结合,可以成功地用于定量测定微摩尔浓度范围内的儿茶酚胺神经递质, R 2在0.916-0.987范围内。因此,所提出的传感策略有可能显着简化传感元件,并扩大迄今为止可使用量子点检测的生物分析物库。

 图文摘要

更新日期:2021-09-16
down
wechat
bug