当前位置: X-MOL 学术Soil Biol. Biochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Straw return and low N addition modify the partitioning of dissimilatory nitrate reduction by increasing conversion to ammonium in paddy fields
Soil Biology and Biochemistry ( IF 9.7 ) Pub Date : 2021-09-16 , DOI: 10.1016/j.soilbio.2021.108425
Shijie Zhang 1, 2, 3 , Gang Zhang 1, 3, 4 , Min Wu 1, 2, 3 , Dejian Wang 1 , Qin Liu 1
Affiliation  

Dissimilatory nitrate reduction to ammonium (DNRA) contributes to nitrogen (N) conservation, whereas denitrification and anaerobic ammonium oxidation (anammox) lead to N loss in agroecosystems. However, their relative roles in nitrate (NO3) partitioning for total dissimilatory NO3 reduction and the effects of long-term straw retention on such mechanisms remain largely unclear. In this study, after implementing straw return and N addition for seven consecutive years in a paddy field, we used 15N tracing combined with molecular biological techniques to investigate the rates of denitrification, anammox, DNRA, and their associated abundance of nosZ, hszB, and nrfA genes, respectively, as well as the characteristics of the DNRA community. The results showed that the rates of denitrification, anammox, and DNRA varied from 20.7 to 33.3, 0.12–0.34, and 0.88–3.20 nmol N g−1 h−1, respectively. Straw return significantly increased denitrification, anammox, DNRA activities, and the abundance of associated genes, except for the anammox hszB gene. With increasing N input rate, the denitrification rate increased (P < 0.05), the DNRA rate decreased (P < 0.05), whereas the abundance of the three functional genes did not change significantly. Compared with chronic high N addition under straw retention, low N amendment increased the DNRA-based NO3 partitioning by 61–111%, although denitrification dominated the dissimilatory NO3 reduction process. The significant increase in soil DOC:NO3 ratio (R2 = 0.89), and the reduction of soil pH (R2 = 0.87) and standing water NO3 concentration (R2 = 0.70), promoted N conservation through DNRA. The core subset of DNRA communities (R2 = 0.99), belonging to Bacteroidetes, Proteobacteria, Euryarchaeota, and Firmicutes phyla, were responsible for DNRA activities. This is the first study to examine all three dissimilatory NO3 reduction processes in response to long-term straw return and N addition. We propose that straw return with low N addition can largely favor DNRA partitioning among the three dissimilatory NO3 reduction processes through biotic and abiotic regulators.



中文翻译:

秸秆还田和低氮添加通过增加稻田中铵的转化来改变异化硝酸盐还原的分配

硝酸盐异化还原为铵 (DNRA) 有助于氮 (N) 的保存,而反硝化和厌氧铵氧化 (anammox) 会导致农业生态系统中的 N 损失。然而,它们在硝酸盐 (NO 3 - ) 分配以减少总异化 NO 3 - 中的相对作用以及长期秸秆保留对此类机制的影响在很大程度上仍不清楚。本研究在稻田连续 7 年实施秸秆还田和施氮后,采用15 N 示踪结合分子生物学技术,研究了反硝化率、厌氧氨氧化、DNRA 及其相关的nosZhszB、和nrfA基因,以及 DNRA 群落的特征。结果表明,反硝化、厌氧氨氧化和 DNRA 的速率分别从 20.7 到 33.3、0.12-0.34 和 0.88-3.20 nmol N g -1 h -1 变化。除厌氧氨氧化hszB基因外,秸秆还田显着增加了反硝化、厌氧氨氧化、DNRA 活性和相关基因的丰度。随着N输入速率的增加,反硝化速率增加(P  < 0.05),DNRA速率降低(P  < 0.05),而三个功能基因的丰度没有显着变化。与秸秆保留条件下的慢性高氮添加相比,低氮添加增加了基于DNRA的NO 3 -分配 61-111%,尽管反硝化作用主导了异化 NO 3 -还原过程。土壤DOC:NO 3 -比率(R 2  = 0.89)的显着增加以及土壤pH值(R 2  = 0.87)和静水NO 3 -浓度(R 2  = 0.70)的降低,通过DNRA促进了N的保存。DNRA 群落的核心子集 (R 2  = 0.99),属于拟杆菌门、变形菌门、Euryarchaeota 和厚壁菌门,负责 DNRA 活动。这是第一项检查所有三种异化 NO 3 的研究-响应长期秸秆还田和氮添加的减少过程。我们提出,低氮添加的秸秆还田在很大程度上有利于 DNRA通过生物和非生物调节剂在三个异化 NO 3 -还原过程中进行分配。

更新日期:2021-09-20
down
wechat
bug