当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nitrogen Vacancy Induced Coordinative Reconstruction of Single-Atom Ni Catalyst for Efficient Electrochemical CO2 Reduction
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-09-15 , DOI: 10.1002/adfm.202107072
Chen Jia 1 , Shunning Li 2 , Yong Zhao 1 , Rosalie K. Hocking 3 , Wenhao Ren 1 , Xianjue Chen 1 , Zhen Su 1 , Wanfeng Yang 1 , Yuan Wang 1 , Shisheng Zheng 2 , Feng Pan 2 , Chuan Zhao 1
Affiliation  

Transition metal nitrogen carbon based single-atom catalysts (SACs) have exhibited superior activity and selectivity for CO2 electroreduction to CO. A favorable local nitrogen coordination environment is key to construct efficient metal-N moieties. Here, a facile plasma-assisted and nitrogen vacancy (NV) induced coordinative reconstruction strategy is reported for this purpose. Under continuous plasma striking, the preformed pentagon pyrrolic N-defects around Ni sites can be transformed to a stable pyridinic N dominant Ni-N2 coordination structure with promoted kinetics toward the CO2-to-CO conversion. Both the CO selectivity and productivity increase markedly after the reconstruction, reaching a high CO Faradaic efficiency of 96% at mild overpotential of 590 mV and a large CO current density of 33 mA cm-2 at 890 mV. X-ray adsorption spectroscopy and density functional theory (DFT) calculations reveal this defective local N environment decreases the restraint on central Ni atoms and provides enough space to facilitate the adsorption and activation of CO2 molecule, leading to a reduced energy barrier for CO2 reduction.

中文翻译:

氮空位诱导的单原子镍催化剂的协同重构以实现高效的电化学 CO2 还原

过渡金属氮碳基单原子催化剂 (SAC) 在将 CO 2电还原为 CO 方面表现出优异的活性和选择性。有利的局部氮配位环境是构建高效金属-N 部分的关键。在这里,为此目的报告了一种简便的等离子体辅助和氮空位 (NV) 诱导的协调重建策略。在连续等离子体冲击下,Ni 位点周围预先形成的五边形吡咯 N 缺陷可以转化为稳定的吡啶 N 占主导的 Ni-N 2配位结构,并促进向 CO 2 的动力学到一氧化碳的转化。重构后CO选择性和生产率均显着提高,在590 mV的轻度过电位和33 mA cm -2的大CO电流密度下达到96%的高CO法拉第效率在890 mV。X 射线吸附光谱和密度泛函理论 (DFT) 计算表明,这种有缺陷的局部 N 环境减少了对中心 Ni 原子的约束,并提供了足够的空间来促进 CO 2分子的吸附和活化,从而降低了 CO 2 的能垒减少。
更新日期:2021-09-15
down
wechat
bug