当前位置: X-MOL 学术IEEE Trans. Neural Netw. Learn. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Safety-Critical Containment Maneuvering of Underactuated Autonomous Surface Vehicles Based on Neurodynamic Optimization With Control Barrier Functions
IEEE Transactions on Neural Networks and Learning Systems ( IF 10.4 ) Pub Date : 2021-09-14 , DOI: 10.1109/tnnls.2021.3110014
Nan Gu , Dan Wang , Zhouhua Peng , Jun Wang

This article addresses the safety-critical containment maneuvering of multiple underactuated autonomous surface vehicles (ASVs) in the presence of multiple stationary/moving obstacles. In a complex marine environment, every ASV suffers from model uncertainties, external disturbances, and input constraints. A safety-critical control method is proposed for achieving a collision-free containment formation. Specifically, a fixed-time extended state observer is employed for estimating the model uncertainties and external disturbances. By estimating lumped disturbances in fixed time, nominal containment maneuvering control laws are designed in an Earth-fixed reference frame. Input-to-state safe control barrier functions (ISSf-CBFs) are constructed for mapping safety constraints on states to constraints on control inputs. A distributed quadratic optimization problem with the norm of control inputs as the objective function and ISSf-CBFs as constraints is formulated. A recurrent neural network-based neurodynamic optimization approach is adopted to solve the quadratic optimization problem for computing the forces and moments within the safety and input constraints in real time. It is proven that the error signals in the closed-loop control system are uniformly ultimately bounded and the multi-ASVs system is guaranteed for input-to-state safety. Simulation results are elaborated to substantiate the effectiveness of the proposed safety-critical control method for ASVs based on neurodynamic optimization with control barrier functions.

中文翻译:

基于具有控制障碍函数的神经动力学优化的欠驱动自主水面车辆的安全关键遏制机动

本文讨论了在存在多个静止/移动障碍物的情况下多个欠驱动自主地面车辆 (ASV) 的安全关键遏制机动。在复杂的海洋环境中,每台 ASV 都受到模型不确定性、外部干扰和输入约束的影响。提出了一种安全关键控制方法来实现无碰撞安全壳编队。具体来说,采用固定时间扩展状态观测器来估计模型的不确定性和外部干扰。通过估计固定时间的集中扰动,在地球固定参考系中设计标称安全壳机动控制律。输入到状态安全控制屏障功能 (ISSf-CBF) 用于将状态安全约束映射到控制输入约束。制定了一个以控制输入范数为目标函数,ISSf-CBFs 为约束的分布式二次优化问题。采用基于递归神经网络的神经动力学优化方法来解决二次优化问题,以实时计算安全和输入约束内的力和力矩。证明了闭环控制系统中的误差信号一致最终有界,保证了多ASV系统的输入到状态安全。详细阐述了仿真结果,以证实所提出的基于具有控制屏障功能的神经动力学优化的 ASV 安全关键控制方法的有效性。采用基于递归神经网络的神经动力学优化方法来解决二次优化问题,以实时计算安全和输入约束内的力和力矩。证明了闭环控制系统中的误差信号一致最终有界,保证了多ASV系统的输入到状态安全。详细阐述了仿真结果,以证实所提出的基于具有控制屏障功能的神经动力学优化的 ASV 安全关键控制方法的有效性。采用基于递归神经网络的神经动力学优化方法来解决二次优化问题,以实时计算安全和输入约束内的力和力矩。证明了闭环控制系统中的误差信号一致最终有界,保证了多ASV系统的输入到状态安全。详细阐述了仿真结果,以证实所提出的基于具有控制屏障功能的神经动力学优化的 ASV 安全关键控制方法的有效性。证明了闭环控制系统中的误差信号一致最终有界,保证了多ASV系统的输入到状态安全。详细阐述了仿真结果,以证实所提出的基于具有控制屏障功能的神经动力学优化的 ASV 安全关键控制方法的有效性。证明了闭环控制系统中的误差信号一致最终有界,保证了多ASV系统的输入到状态安全。详细阐述了仿真结果,以证实所提出的基于具有控制屏障功能的神经动力学优化的 ASV 安全关键控制方法的有效性。
更新日期:2021-09-14
down
wechat
bug