当前位置: X-MOL 学术Environ. Sci. Pollut. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accelerated sunlight photocatalysis through improved electron mobility between g-C3N4 and BiPO4 nanomaterial
Environmental Science and Pollution Research Pub Date : 2021-09-14 , DOI: 10.1007/s11356-021-16449-y
Jit Jang Ng 1 , Lan Ching Sim 2 , Wen-Da Oh 3 , Pichiah Saravanan 4 , Bo Tan 5 , Kah Hon Leong 1
Affiliation  

Herein, we report a detailed study on creating heterojunction between graphitic carbon nitride (g-C3N4) and bismuth phosphate (BiPO4), enhancing the unpaired free electron mobility. This leads to an accelerated photocatalysis of 2,4-dichlorophenols (2,4-DCPs) under sunlight irradiation. The heterojunction formation was efficaciously conducted via a modest thermal deposition technique. The function of g-C3N4 plays a significant role in generating free electrons under sunlight irradiation. Together, the generated electrons at the g-C3N4 conduction band (CB) are transferred and trapped by the BiPO4 to form active superoxide anion radicals (•O2). These active radicals will be accountable for the photodegradation of 2,4-DCPs. The synthesized composite characteristics were methodically examined through several chemical and physical studies. Due to the inimitable features of both g-C3N4 and BiPO4, its heterojunction formation, 2.5wt% BiPO4/g-C3N4 achieved complete 2,4-DCP removal (100%) in 90 min under sunlight irradiation. This is due to the presence of g-C3N4 that enhanced electron mobility through the formation of heterojunctions that lengthens the electron-hole pairs’ lifetime and maximizes the entire solar spectrum absorption to generate active electrons at the g-C3N4 conduction band. Thus, this formation significantly draws the attention for future environmental remediation, especially in enhancing the entire solar spectrum’s harvesting.

Graphical abstract



中文翻译:

通过改善 g-C3N4 和 BiPO4 纳米材料之间的电子迁移率加速阳光光催化

在此,我们报告了关于在石墨碳氮化物 (gC 3 N 4 ) 和磷酸铋 (BiPO 4 ) 之间形成异质结以增强未成对自由电子迁移率的详细研究。这导致 2,4-二氯苯酚 (2,4-DCP) 在阳光照射下的光催化加速。异质结的形成是通过适度的热沉积技术有效地进行的。gC 3 N 4的功能在阳光照射下产生自由电子方面起着重要作用。gC 3 N 4导带 (CB) 处产生的电子一起被转移并被 BiPO 4俘获形成活性超氧阴离子自由基(•O 2 - )。这些活性自由基将负责 2,4-DCP 的光降解。通过多项化学和物理研究,系统地检查了合成的复合材料的特性。由于gC 3 N 4和BiPO 4具有不可模仿的特性,其异质结形成,2.5wt% BiPO 4 /gC 3 N 4在阳光照射下90分钟内实现2,4-DCP的完全去除(100%)。这是由于 gC 3 N 4的存在通过形成异质结来增强电子迁移率,从而延长电子-空穴对的寿命并最大限度地吸收整个太阳光谱,从而在 gC 3 N 4导带产生活性电子。因此,这种形成显着引起了人们对未来环境修复的关注,特别是在增强整个太阳光谱的收集方面。

图形概要

更新日期:2021-09-15
down
wechat
bug