当前位置: X-MOL 学术J. Build. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Feasibility study of the physical implementation of rate-independent linear damping for the protection of low-frequency structures
Journal of Building Engineering ( IF 6.7 ) Pub Date : 2021-09-15 , DOI: 10.1016/j.jobe.2021.103319
Wei Liu 1 , Kohju Ikago 2
Affiliation  

Damage to nonstructural components or excessive displacements in low-frequency structures caused by recent major earthquakes, such as the 2011 Great East Japan Earthquake, highlighted the need to protect these structures against earthquake-induced damage. Rate-independent linear damping (RILD) has been found to be a viable option for reducing the excessive displacement of low-frequency structures because its control force is larger in the low-frequency region than that of conventional damping elements. Most of the studies on RILD have focused on theoretical and mathematical aspects rather than their practical application. The main objective of this study was to examine the feasibility of the physical implementation of RILD for the protection of low-frequency structures. In this study, a passive causal RILD (CRILD) device comprising a Maxwell element and a negative stiffness element was considered to mechanically realize RILD. Numerical analysis and real-time hybrid simulation (RTHS) on a single-degree-of-freedom (SDOF) system incorporated with the proposed device were performed to identify the challenges in the physical implementation of a passive CRILD device. The results confirmed that CRILD can achieve a similar control effect of low-frequency structures to the ideal RILD and can reduce structural dynamic responses more effectively than the commonly used linear viscous damping (LVD) model.



中文翻译:

用于保护低频结构的与速率无关的线性阻尼的物理实现的可行性研究

近期发生的大地震(例如 2011 年东日本大地震)导致低频结构的非结构部件损坏或过度位移,凸显了保护这些结构免受地震引起的损坏的必要性。与速率无关的线性阻尼 (RILD) 已被发现是减少低频结构过度位移的可行选择,因为其在低频区域的控制力大于传统阻尼元件的控制力。大多数关于 RILD 的研究都集中在理论和数学方面,而不是它们的实际应用。本研究的主要目的是检查物理实施 RILD 以保护低频结构的可行性。在这项研究中,包括麦克斯韦元件和负刚度元件的被动因果 RILD (CRILD) 设备被认为是机械实现 RILD。对与所提出的设备结合的单自由度 (SDOF) 系统进行数值分析和实时混合仿真 (RTHS),以确定无源 CRILD 设备的物理实现中的挑战。结果证实,CRILD可以实现与理想RILD相似的低频结构控制效果,并且比常用的线性粘性阻尼(LVD)模型更有效地降低结构动力响应。对与所提出的设备结合的单自由度 (SDOF) 系统进行数值分析和实时混合仿真 (RTHS),以确定无源 CRILD 设备的物理实现中的挑战。结果证实,CRILD可以实现与理想RILD相似的低频结构控制效果,并且比常用的线性粘性阻尼(LVD)模型更有效地降低结构动力响应。对与所提出的设备结合的单自由度 (SDOF) 系统进行数值分析和实时混合仿真 (RTHS),以确定无源 CRILD 设备的物理实现中的挑战。结果证实,CRILD可以实现与理想RILD相似的低频结构控制效果,并且比常用的线性粘性阻尼(LVD)模型更有效地降低结构动力响应。

更新日期:2021-09-15
down
wechat
bug