当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Genuine divalent magnesium-ion storage and fast diffusion kinetics in metal oxides at room temperature [Chemistry]
Proceedings of the National Academy of Sciences of the United States of America ( IF 11.1 ) Pub Date : 2021-09-21 , DOI: 10.1073/pnas.2111549118
Jinlin Yang 1 , Jibiao Li 2 , Wenbin Gong 3 , Fengxia Geng 4
Affiliation  

Rechargeable magnesium batteries represent a viable alternative to lithium-ion technology that can potentially overcome its safety, cost, and energy density limitations. Nevertheless, the development of a competitive room temperature magnesium battery has been hindered by the sluggish dissociation of electrolyte complexes and the low mobility of Mg2+ ions in solids, especially in metal oxides that are generally used in lithium-ion batteries. Herein, we introduce a generic proton-assisted method for the dissociation of the strong Mg–Cl bond to enable genuine Mg2+ intercalation into an oxide host lattice; meanwhile, the anisotropic Smoluchowski effect produced by titanium oxide lattices results in unusually fast Mg2+ diffusion kinetics along the atomic trough direction with a record high ion conductivity of 1.8 × 10−4 S ⋅ cm−1 on the same order as polymer electrolyte. The realization of genuine Mg2+ storage and fast diffusion kinetics enabled a rare high-power Mg-intercalation battery with inorganic oxides. The success of this work provides important information on engineering surface and interlayer chemistries of layered materials to tackle the sluggish intercalation kinetics of multivalent ions.



中文翻译:

室温下金属氧化物中真正的二价镁离子储存和快速扩散动力学 [化学]

可充电镁电池代表了锂离子技术的可行替代方案,可以潜在地克服其安全性、成本和能量密度的限制。然而,具有竞争力的室温镁电池的发展受到电解质复合物解离缓慢和 Mg 2+离子在固体中的低迁移率的阻碍,特别是在通常用于锂离子电池的金属氧化物中。在此,我们介绍了一种通用的质子辅助方法来解离强 Mg-Cl 键,从而使真正的 Mg 2+嵌入到氧化物主晶格中;同时,由氧化钛晶格产生的各向异性 Smoluchowski 效应导致异常快速的 Mg 2+沿原子槽方向的扩散动力学,具有与聚合物电解质相同数量级的 1.8 × 10 -4 S ⋅ cm -1的创纪录高离子电导率。真正的 Mg 2+存储和快速扩散动力学的实现使罕见的具有无机氧化物的高功率镁插层电池成为可能。这项工作的成功提供了关于层状材料的工程表面和层间化学的重要信息,以解决多价离子缓慢的嵌入动力学问题。

更新日期:2021-09-15
down
wechat
bug