当前位置: X-MOL 学术Adv. Healthcare Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bionanoscale Recognition Underlies Cell Fate and Therapy
Advanced Healthcare Materials ( IF 10.0 ) Pub Date : 2021-09-15 , DOI: 10.1002/adhm.202101260
Shan Sun 1 , Peng Deng 1 , Li Mu 2 , Xiangang Hu 1 , Shuqing Guo 1
Affiliation  

Understanding the bionanoscale recognition of nanostructured architectures is critical to the design and application of nanomaterials, but the related information is not well understood. In this study, it is found that bionanoscale recognition underlies cell fate and therapy. For example, 1T phase (octahedral coordination) monolayer MoS2 exhibits a markedly stronger affinity for fibronectin than the 2H structure (triangular prism coordination) and promotes cell spreading and differentiation. The van der Waals energy and increased turn components contribute to the high adhesion of fibronectin onto the 1T-MoS2 structure. 1T-MoS2 exhibits a significantly stronger affinity (KD, 6.59 × 10−7 m) for liposomes than 2H-MoS2 (1.21 × 10−6 m) due to strong hydrophobic interactions. The existence of octahedrally coordinated atomic structures that improve cell viability by enhancing the neurite length is first proven by random forest and structural equation models. Consequently, octahedral coordination disaggregates α-synuclein (e.g., by decreasing β-sheets and increasing coil structures) and protects cells and hosts against Parkinson's disease. As a proof-of-principle demonstration, these findings indicate that bionanoscale recognition underlies the design of biomaterials and cell therapeutics.

中文翻译:

生物纳米尺度识别是细胞命运和治疗的基础

了解纳米结构结构的生物纳米级识别对于纳米材料的设计和应用至关重要,但相关信息尚不清楚。在这项研究中,发现生物纳米级识别是细胞命运和治疗的基础。例如,1T 相(八面体配位)单层 MoS 2对纤连蛋白的亲和力明显强于 2H 结构(三角棱柱配位),并促进细胞扩散和分化。范德华能和增加的匝分量有助于纤连蛋白在 1T-MoS 2结构上的高粘附性。1T-MoS 2表现出明显更强的亲和力(K D , 6.59 × 10 -7 m)由于强疏水相互作用,脂质体比 2H-MoS 2 (1.21 × 10 -6 m ) 大。随机森林和结构方程模型首先证明了八面体协调原子结构的存在,该结构通过增加神经突长度来提高细胞活力。因此,八面体配位分解α-突触核蛋白(例如,通过减少β-折叠和增加螺旋结构)并保护细胞和宿主免受帕金森病的侵害。作为原理证明,这些发现表明生物纳米级识别是生物材料和细胞疗法设计的基础。
更新日期:2021-11-17
down
wechat
bug