当前位置: X-MOL 学术Renew. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling and estimation of moisture transport properties of drying of potential Amazon biomass for renewable energy: Application of the two-compartment approach and diffusive models with constant or moisture-dependent coefficient
Renewable Energy ( IF 9.0 ) Pub Date : 2021-09-15 , DOI: 10.1016/j.renene.2021.09.054
Caio C. Claudio 1 , MaisaT.B. Perazzini 1 , Hugo Perazzini 1
Affiliation  

Mathematical modeling and estimation of moisture transport properties in drying of acai biomass were done in this work. The first approach consisted of applying the diffusive model for three different boundary conditions at the particle's surface and the effective diffusivity considered a constant or variable parameter. It was found that the model's accuracy depended on the drying level and the boundary conditions for the effective diffusivity assumed as a constant parameter. Accordingly, the results from the Arrhenius relationship depended on the predictions of the different approaches of the diffusive model, giving different values of the activation energy for the same experimental condition. The effective diffusivity ranged from 9 × 10−11 to 7 × 10−10 m2 s−1 and the activation energy from 38 to 55 kJ mol−1, indicating a high resistance to moisture evaporation. The predictions were not improved when considering the effective diffusivity as a moisture-dependent parameter, possibly due to the simplifications used for calculations. The two-compartment concept consisted of a set of differential equations that gave the best concordance with experimental data. The kinetics parameters ranged from 0.2 to 17 h−1 and presented a well-defined variation with the operating conditions, encouraging its use in drying optimization for efficient conversion processes.



中文翻译:

用于可再生能源的潜在亚马逊生物质干燥的水分输送特性的建模和估计:两室方法和具有常数或水分相关系数的扩散模型的应用

在这项工作中完成了 acai 生物质干燥过程中水分输送特性的数学建模和估计。第一种方法包括对粒子表面的三种不同边界条件应用扩散模型,并将有效扩散率视为常数或可变参数。发现模型的准确性取决于干燥程度和假设为常数参数的有效扩散率的边界条件。因此,Arrhenius 关系的结果取决于扩散模型不同方法的预测,对于相同的实验条件给出不同的活化能值。有效扩散率范围为 9 × 10 -11至 7 × 10 -10  m 2  s-1和从 38 到 55 kJ mol -1的活化能,表明对水分蒸发的高抵抗力。当将有效扩散率视为与湿度相关的参数时,预测并未得到改善,这可能是由于计算过程中使用了简化。两室概念由一组微分方程组成,这些方程与实验数据具有最佳一致性。动力学参数的范围为 0.2 至 17 h -1并且随着操作条件呈现明确的变化,鼓励将其用于干燥优化以实现高效转化过程。

更新日期:2021-09-21
down
wechat
bug